441 research outputs found

    Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent

    Get PDF
    Replica exchange methods (REMs) are increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. However, despite having been shown to be very effective on model systems, the application of REM in complex systems such as for the simulation of protein and peptide folding in explicit solvent has not been objectively tested in detail. Here we present a comparison of conventional MD and temperature replica exchange MD (T-REMD) simulations of a beta-heptapeptide in explicit solvent. This system has previously been shown to undergo reversible folding on the time scales accessible to MD simulation and thus allows a direct one-to-one comparison of efficiency. The primary properties compared are the free energy of folding and the relative populations of different conformers as a function of temperature. It is found that to achieve a similar degree of precision T-REMD simulations starting from a random set of initial configurations were approximately an order of magnitude more computationally efficient than a single 800 ns conventional MD simulation for this system at the lowest temperature investigated (275 K). However, whereas it was found that T-REMD simulations are more than four times more efficient than multiple independent MD simulations at one temperature (300 K) the actual increase in conformation sampling was only twofold. The overall gain in efficiency using REMD resulted primarily from the ordering of different conformational states over temperature, as opposed to a large increase of conformational sampling. It is also shown that in this system exchanges are accepted primarily based on (random) fluctuations within the solvent and are not strongly correlated with the instantaneous peptide conformation raising questions in regard to the efficiency of T-REMD in larger systems

    Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes

    Get PDF
    We reveal the molecular mechanism by which cardiolipin glues respiratory complexes into supercomplexes. This mechanism defines a new biophysico-chemical pathway of protein–lipid interplay, with broad general implications for the dynamic organization of crowded cell membranes.</p

    From light-harvesting to photoprotection:structural basis of the dynamic switch of the major antenna complex of plants (LHCII)

    Get PDF
    Light-Harvesting Complex II (LHCII) is largely responsible for light absorption and excitation energy transfer in plants in light-limiting conditions, while in high-light it participates in photoprotection. It is generally believed that LHCII can change its function by switching between different conformations. However, the underlying molecular picture has not been elucidated yet. The available crystal structures represent the quenched form of the complex, while solubilized LHCII has the properties of the unquenched state. To determine the structural changes involved in the switch and to identify potential quenching sites, we have explored the structural dynamics of LHCII, by performing a series of microsecond Molecular Dynamics simulations. We show that LHCII in the membrane differs substantially from the crystal and has the signatures that were experimentally associated with the light-harvesting state. Local conformational changes at the N-terminus and at the xanthophyll neoxanthin are found to strongly correlate with changes in the interactions energies of two putative quenching sites. In particular conformational disorder is observed at the terminal emitter resulting in large variations of the excitonic coupling strength of this chlorophyll pair. Our results strongly support the hypothesis that light-harvesting regulation in LHCII is coupled with structural changes

    The power of coarse graining in biomolecular simulations

    Get PDF
    Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling

    The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Get PDF
    Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and [alpha]-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a [beta]-sheet arrangement reminiscent of the [beta]-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods
    • …
    corecore