8 research outputs found

    A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster

    Get PDF
    Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 Ɨ 10āˆ’5 per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila

    Rapid Low-Cost Assembly of the Drosophila melanogaster Reference Genome Using Low-Coverage, Long-Read Sequencing.

    No full text
    Accurate and comprehensive characterization of genetic variation is essential for deciphering the genetic basis of diseases and other phenotypes. A vast amount of genetic variation stems from large-scale sequence changes arising from the duplication, deletion, inversion, and translocation of sequences. In the past 10 years, high-throughput short reads have greatly expanded our ability to assay sequence variation due to single nucleotide polymorphisms. However, a recent de novo assembly of a second Drosophila melanogaster reference genome has revealed that short read genotyping methods miss hundreds of structural variants, including those affecting phenotypes. While genomes assembled using high-coverage long reads can achieve high levels of contiguity and completeness, concerns about cost, errors, and low yield have limited widespread adoption of such sequencing approaches. Here we resequenced the reference strain of D. melanogaster (ISO1) on a single Oxford Nanopore MinION flow cell run for 24 hr. Using only reads longer than 1 kb or with at least 30x coverage, we assembled a highly contiguous de novo genome. The addition of inexpensive paired reads and subsequent scaffolding using an optical map technology achieved an assembly with completeness and contiguity comparable to the D. melanogaster reference assembly. Comparison of our assembly to the reference assembly of ISO1 uncovered a number of structural variants (SVs), including novel LTR transposable element insertions and duplications affecting genes with developmental, behavioral, and metabolic functions. Collectively, these SVs provide a snapshot of the dynamics of genome evolution. Furthermore, our assembly and comparison to the D. melanogaster reference genome demonstrates that high-quality de novo assembly of reference genomes and comprehensive variant discovery using such assemblies are now possible by a single lab for under $1,000 (USD)

    Identification of EMS-Induced Mutations in Drosophila melanogaster by Whole-Genome Sequencing

    No full text
    Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing āˆ¼70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods

    Supplemental Material for Solares et al., 2018

    No full text
    Supplemental figures and tables for "Rapid low-cost assembly of the <i>Drosophila melanogaster</i> reference genome using low-coverage, long-read sequencing"
    corecore