48 research outputs found
Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil
Plant-microbe interactions are considered to be important processes determining
the efficiency of phytoremediation of petroleum pollution, however relatively
little is known about how these interactions are influenced by petroleum
pollution. In this experimental study using a microcosm approach, we examined
how plant ecophysiological traits, soil nutrients and microbial activities were
influenced by petroleum pollution in Phragmites australis, a
phytoremediating species. Generally, petroleum pollution reduced plant
performance, especially at early stages of plant growth. Petroleum had negative
effects on the net accumulation of inorganic nitrogen from its organic forms
(net nitrogen mineralization (NNM)) most likely by decreasing the inorganic
nitrogen available to the plants in petroleum-polluted soils. However, abundant
dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order
to overcome initial deficiency of inorganic nitrogen, plants by dint of high
colonization of arbuscular mycorrhizal fungi might absorb some DON for their
growth in petroleum-polluted soils. In addition, through using a real-time
polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial
traits based on their catabolic genes (i.e. alkB (alkane
monooxygenase), nah (naphthalene dioxygenase) and
tol (xylene monooxygenase) genes). This enumeration of
target genes suggests that different hydrocarbon-degrading bacteria experienced
different dynamic changes during phytoremediation and a greater abundance of
alkB was detected during vegetative growth stages. Because
phytoremediation of different components of petroleum is performed by different
hydrocarbon-degrading bacteria, plants’ ability of phytoremediating
different components might therefore vary during the plant life cycle.
Phytoremediation might be most effective during the vegetative growth stages as
greater abundances of hydrocarbon-degrading bacteria containing
alkB and tol genes were observed at these
stages. The information provided by this study enhances our understanding of the
effects of petroleum pollution on plant-microbe interactions and the roles of
these interactions in the phytoremediation of petroleum-polluted soil
Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers.
An ability of the Epstein-Barr virus latent membrane protein LMP1 to enhance the survival of infected B cells through upregulation of the bcl-2 oncogene was first suggested by experiments involving gene transfection and the selection of stable LMP1+ clones (S. Henderson, M. Rowe, C. Gregory, F. Wang, E. Kieff, and A. Rickinson, Cell 65:1107-1115, 1991). However, it was not possible to ascertain whether Bcl-2 upregulation was a specific consequence of LMP1 expression or an artifact of the selection procedure whereby rare Bcl-2+ cells already present in the starting population might best be able to tolerate the potentially toxic effects of LMP1. We therefore reexamined this issue by using two different experimental approaches that allowed LMP1-induced effects to be monitored immediately following expression of the viral protein and in the absence of selective pressures; activation of the NF-kappa B transcription factor and upregulation of the cell adhesion molecule ICAM-1 were used as early indices of LMP1 function. In the first approach, stable clones of two B-cell lines carrying an LMP1 gene under the control of an inducible metallothionein promoter were induced to express LMP1 in all cells. Activation of NK-kappa B and upregulation of ICAM-1 occurred within 24 h and were followed at 48 to 72 h by upregulation of Bcl-2. In the second approach, we tested the generality of this phenomenon by transiently expressing LMP1 from a strong constitutively active promoter in a range of different cell types. All six B-cell lines tested showed NF-kappa B activation in response to LMP1 expression, and this was followed in five of six lines by expression of ICAM-1 and Bcl-2. In the same experiments, all three non-B-cell lines showed NF-kappa B activation and ICAM-1 upregulation but never any effect upon Bcl-2. We therefore conclude that Bcl-2 upregulation is part of the panoply of cellular changes induced by LMP1 but that the effect is cell type specific. Our data also suggest that whilst NF-kappa B may be an essential component of LMP1 signal transduction, other cell-specific factors may be required to effect some functions of the viral protein
Selenium increases seed production in Brassica
Selenium (Se) is essential for humans and animals but is not considered to be essential for higher plants. Although researchers have found increases in vegetative growth due to fertiliser Se, there has been no definitive evidence to date of increased reproductive capacity, in terms of seed production and seed viability. The aim of this study was to evaluate seed production and growth responses to a low dose of Se (as sodium selenite, added to solution culture) compared to very low-Se controls in fast-cycling Brassica rapa L. Although there was no change in total biomass, Se treatment was associated with a 43% increase in seed production. The Se-treated Brassica plants had higher total respiratory activity in leaves and flowers, which may have contributed to higher seed production. This study provides additional evidence for a beneficial role for Se in higher plants. © 2008 Springer Science+Business Media B.V.G. H. Lyons, Y. Genc, K. Soole, J. C. R. Stangoulis, F. Liu, R. D. Graha