4 research outputs found

    MOLECULAR PATHOGENESIS OF INFLUENZA IN SWINE AND ENGINEERING OF NOVEL RECOMBINANT INFLUENZA VIRUSES

    Get PDF
    Influenza A viruses (IAVs) belong to the family Orthomyxoviridae and represent major pathogens of both humans and animals. Swine influenza virus is an important pathogen that affects not only the swine industry, but also represents a constant threat to the turkey industry and is of particular concern to public health. In North America, H3N2 triple reassortant (TR) IAVs first emerged in 1998 and have since become endemic in swine populations. In the first part of this dissertation, we focused on the role of surface glycoproteins and PB1-F2 to unravel their roles in the virulence of TR IAVs in this important natural host. We found that surface glycoproteins are necessary and sufficient for the lung pathology, whereas the internal genes play a major role in the febrile response induced by TR H3N2 IAVs in swine. With respect to PB1-F2, we found that PB1-F2 exerts pleiotropic effects in the swine host, which are expressed in a strain-dependent manner. Pathogenicity studies in swine revealed that the presence of PB1-F2 leads the following effects in context of three TR strains tested: no effect in the context of sw/99 strain; increases the virulence of pH1N1; and decreases the virulence of ty/04. Next, we developed temperature-sensitive live attenuated influenza vaccines for use in swine and shown that these vaccines are safe and efficacious against aggressive intratracheal challenge with pH1N1. Lastly, we rearranged the genome of an avian H9N2 influenza virus to generate replication competent influenza virus vectors that provide a robust system for expression and delivery of foreign genes. As a proof-of-principle, we expressed the hemagglutinin from a prototypical highly pathogenic avian influenza virus (HPAIV) H5N1 and shown that this vectored H5 vaccine retained its safety properties in avian and mammalian species, and induced excellent protection against aggressive HPAIV H5N1 challenges in both mice and ferrets. Taken together, these studies have advanced our understanding of molecular basis of pathogenesis of influenza in the swine host and have contributed to the development of improved vaccines and influenza-based vectors with potential applications in both human and veterinary medicine

    Deletions in the neuraminidase stalk region of H2N2 and H9N2 avian influenza virus subtypes do not affect postinfluenza secondary bacterial pneumonia

    Get PDF
    We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy. © 2012, American Society for Microbiology.Fil: Chockalingam, Ashok K.. University of Maryland; Estados UnidosFil: Hickman, Danielle. University of Maryland; Estados UnidosFil: Pena, Lindomar. University of Maryland; Estados UnidosFil: Ye, Jianqiang. University of Maryland; Estados UnidosFil: Ferrero, Andrea. University of Maryland; Estados UnidosFil: Echenique, Jose Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Chen, Hongjun. University of Maryland; Estados UnidosFil: Sutton, Troy. University of Maryland; Estados UnidosFil: Perez, Daniel R.. University of Maryland; Estados Unido

    Neurological disease in adults with Zika and chikungunya virus infection in Northeast Brazil: a prospective observational study

    Get PDF
    Background: Since 2015, the arthropod-borne viruses (arboviruses) Zika and chikungunya have spread across the Americas causing outbreaks, accompanied by increases in immune-mediated and infectious neurological disease. The spectrum of neurological manifestations linked to these viruses, and the importance of dual infection, are not known fully. We aimed to investigate whether neurological presentations differed according to the infecting arbovirus, and whether patients with dual infection had a different disease spectrum or severity. Methods: We report a prospective observational study done during epidemics of Zika and chikungunya viruses in Recife, Pernambuco, a dengue-endemic area of Brazil. We recruited adults aged 18 years or older referred to Hospital da Restauração, a secondary-level and tertiary-level hospital, with suspected acute neurological disease and a history of suspected arboviral infection. We looked for evidence of Zika, chikungunya, or dengue infection by viral RNA or specific IgM antibodies in serum or CSF. We grouped patients according to their arbovirus laboratory diagnosis and then compared demographic and clinical characteristics. Findings: Between Dec 4, 2014, and Dec 4, 2016, 1410 patients were admitted to the hospital neurology service; 201 (14%) had symptoms consistent with arbovirus infection and sufficient samples for diagnostic testing and were included in the study. The median age was 48 years (IQR 34–60), and 106 (53%) were women. 148 (74%) of 201 patients had laboratory evidence of arboviral infection. 98 (49%) of them had a single viral infection (41 [20%] had Zika, 55 [27%] had chikungunya, and two [1%] had dengue infection), whereas 50 (25%) had evidence of dual infection, mostly with Zika and chikungunya viruses (46 [23%] patients). Patients positive for arbovirus infection presented with a broad range of CNS and peripheral nervous system (PNS) disease. Chikungunya infection was more often associated with CNS disease (26 [47%] of 55 patients with chikungunya infection vs six [15%] of 41 with Zika infection; p=0·0008), especially myelitis (12 [22%] patients). Zika infection was more often associated with PNS disease (26 [63%] of 41 patients with Zika infection vs nine [16%] of 55 with chikungunya infection; p≤0·0001), particularly Guillain-Barré syndrome (25 [61%] patients). Patients with Guillain-Barré syndrome who had Zika and chikungunya dual infection had more aggressive disease, requiring intensive care support and longer hospital stays, than those with mono-infection (median 24 days [IQR 20–30] vs 17 days [10–20]; p=0·0028). Eight (17%) of 46 patients with Zika and chikungunya dual infection had a stroke or transient ischaemic attack, compared with five (6%) of 96 patients with Zika or chikungunya mono-infection (p=0·047). Interpretation: There is a wide and overlapping spectrum of neurological manifestations caused by Zika or chikungunya mono-infection and by dual infections. The possible increased risk of acute cerebrovascular disease in patients with dual infection merits further investigation. Funding: Fundação do Amparo a Ciência e Tecnologia de Pernambuco (FACEPE), EU's Horizon 2020 research and innovation programme, National Institute for Health Research. Translations: For the Portuguese and Spanish translations of the abstract see Supplementary Materials section

    Computed Tomographic Findings in Microcephaly Associated with Zika Virus

    No full text
    Submitted by Adagilson Silva ([email protected]) on 2017-07-04T14:22:21Z No. of bitstreams: 1 27050112 2016 haz-com.pdf: 444822 bytes, checksum: c7487f1acf46c1afc7d3e70f6f232cfd (MD5)Approved for entry into archive by Adagilson Silva ([email protected]) on 2017-07-04T15:07:04Z (GMT) No. of bitstreams: 1 27050112 2016 haz-com.pdf: 444822 bytes, checksum: c7487f1acf46c1afc7d3e70f6f232cfd (MD5)Made available in DSpace on 2017-07-04T15:07:04Z (GMT). No. of bitstreams: 1 27050112 2016 haz-com.pdf: 444822 bytes, checksum: c7487f1acf46c1afc7d3e70f6f232cfd (MD5) Previous issue date: 2016Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, Brasi
    corecore