11 research outputs found
Distinct Quantum States Can Be Compatible with a Single State of Reality
Perhaps the quantum state represents information about reality, and not
reality directly. Wave function collapse is then possibly no more mysterious
than a Bayesian update of a probability distribution given new data. We
consider models for quantum systems with measurement outcomes determined by an
underlying physical state of the system but where several quantum states are
consistent with a single underlying state---i.e., probability distributions for
distinct quantum states overlap. Significantly, we demonstrate by example that
additional assumptions are always necessary to rule out such a model.Comment: 5 pages, 2 figure
Excitonic fine structure in emission of linear carbon chains
We studied monatomic linear carbon chains stabilized by gold nanoparticles attached to their ends and deposited on a solid substrate. We observe spectral features of straight chains containing from 8 to 24 atoms. Low-temperature PL spectra reveal characteristic triplet fine structures that repeat themselves for carbon chains of different lengths. The triplet is invariably composed of a sharp intense peak accompanied by two broader satellites situated 15 and 40 meV below the main peak. We interpret these resonances as an edge-state neutral exciton and positively and negatively charged trions, respectively. The time-resolved PL shows that the radiative lifetime of the observed quasiparticles is about 1 ns, and it increases with the increase of the length of the chain. At high temperatures a nonradiative exciton decay channel appears due to the thermal hopping of carriers between parallel carbon chains. Excitons in carbon chains possess large oscillator strengths and extremely low inhomogeneous broadenings