55 research outputs found

    Abscisic acid and jasmonates : the phytohormones behind the yield losses in sheath rot-affected rice?

    Get PDF
    Sheath rot is a fast spreading rice disease that can destroy the total yield of a growing season. Diseased plants show brown necrotic lesions on the uppermost leaf sheath and produce empty seeds or no seeds at all. Sheath rot can be caused by the toxin-producing pathogens, Sarocladium oryzae and Pseudomonas fuscovaginae. The fungus S. oryzae produces helvolic acid and cerulenin and the bacterium P. fuscovaginae produces cyclic lipopeptides. These toxins show antimicrobial and phytotoxic activity. Since it is not understood how the pathogens interact with their host, phytohormones were measured in the rice sheath at different time points during the infection process using HPLC-ESI-MS/HRMS. Interestingly, both pathogens triggered abscisic acid (ABA), jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA). Phytohormone levels showed a strong correlation with severity of sheath rot symptoms and grain production. For S. oryzae, these levels were also strongly correlated with in planta helvolic acid production. Although ABA, JA and OPDA are known for their defense-regulatory role, they do not act as resistance factors in the S. oryzae-rice pathosystem. It is known, however, that ABA and JA pathways act together to interfere with seed set and filling by interrupting source-sink relationships which results in lower grain yields. We hypothesise that the strong effects on seed production and filling, seen in sheath rot-affected plants, are due to increased ABA and oxylipin levels. We are currently investigating the role of the microbial toxins in this process by using knock-out mutants in both pathogens

    Morphological, Pathogenic and Toxigenic Variability in the Rice Sheath Rot Pathogen Sarocladium Oryzae

    Get PDF
    Sheath rot is an emerging rice disease that leads to considerable yield losses. The main causal agent is the fungus Sarocladium oryzae. This pathogen is known to produce the toxins cerulenin and helvolic acid, but their role in pathogenicity has not been clearly established. S. oryzea isolates from different rice-producing regions can be grouped into three phylogenetic lineages. When grown in vitro, isolates from these lineages differed in growth rate, colour and in the ability to form sectors. A diverse selection of isolates from Rwanda and Nigeria, representing these lineages, were used to further study their pathogenicity and toxin production. Liquid chromatography high-resolution mass spectrometry analysis was used to measure cerulenin and helvolic acid production in vitro and in planta. The three lineages clearly differed in pathogenicity on the japonica cultivar Kitaake. Isolates from the least pathogenic lineage produced the highest levels of cerulenin in vitro. Helvolic acid production was not correlated with the lineage. Sectorisation was observed in isolates from the two least pathogenic lineages and resulted in a loss of helvolic acid production. In planta, only the production of helvolic acid, but not of cerulenin, correlated strongly with disease severity. The most pathogenic isolates all belonged to one lineage. They were phenotypically stable, shown by the lack of sectorisation, and therefore maintained high helvolic acid production in planta

    Auxin, abscisic acid and jasmonate are the central players in rice sheath rot caused by Sarocladium oryzae and Pseudomonas fuscovaginae

    Get PDF
    Sheath rot is an emerging rice disease that causes severe yield losses worldwide. The main causal agents are the toxin producers Sarocladium oryzae and Pseudomonas fuscovaginae. The fungus S. oryzae produces helvolic acid and cerulenin and the bacterium P. fuscovaginae produces cyclic lipopeptides. Helvolic acid and the lipopeptide, fuscopeptin, inhibit membrane-bound H+-ATPase pumps in the rice plant. To manage rice sheath rot, a better understanding of the host response and virulence strategies of the pathogens is required. This study investigated the interaction of the sheath rot pathogens with their host and the role of their toxins herein. Japonica rice was inoculated with high- and low-helvolic acid-producing S. oryzae isolates or with P. fuscovaginae wild type and fuscopeptin mutant strains. During infection, cerulenin, helvolic acid and the phytohormones abscisic acid, jasmonate, auxin and salicylic acid were quantified in the sheath. In addition, disease severity and grain yield parameters were assessed. Rice plants responded to high-toxin-producing S. oryzae and P. fuscovaginae strains with an increase in abscisic acid, jasmonate and auxin levels. We conclude that, for both pathogens, toxins play a core role during sheath rot infection. S. oryzae and P. fuscovaginae interact with their host in a similar way. This may explain why both sheath rot pathogens cause very similar symptoms despite their different nature

    Joint and muscle assessments of the separate effects of Botulinum NeuroToxin-A and lower-leg casting in children with cerebral palsy

    Get PDF
    Botulinum NeuroToxin-A (BoNT-A) injections to the medial gastrocnemius (MG) and lower-leg casts are commonly combined to treat ankle equinus in children with spastic cerebral palsy (CP). However, the decomposed treatment effects on muscle or tendon structure, stretch reflexes, and joint are unknown. In this study, BoNT-A injections to the MG and casting of the lower legs were applied separately to gain insight into the working mechanisms of the isolated treatments on joint, muscle, and tendon levels. Thirty-one children with spastic CP (GMFCS I-III, age 7.4 +/- 2.6 years) received either two weeks of lower-leg casts or MG BoNT-A injections. During full range of motion slow and fast passive ankle rotations, joint resistance and MG stretch reflexes were measured. MG muscle and tendon lengths were assessed at resting and at maximum dorsiflexion ankle angles using 3D-freehand ultrasound. Treatment effects were compared using non-parametric statistics. Associations between the effects on joint and muscle or tendon levels were performed using Spearman correlation coefficients (p < 0.05). Increased joint resistance, measured during slow ankle rotations, was not significantly reduced after either treatment. Additional joint resistance assessed during fast rotations only reduced in the BoNT-A group (-37.6%, p = 0.013, effect size = 0.47), accompanied by a reduction in MG stretch reflexes (-70.7%, p = 0.003, effect size = 0.56). BoNT-A increased the muscle length measured at the resting ankle angle (6.9%, p = 0.013, effect size = 0.53). Joint angles shifted toward greater dorsiflexion after casting (32.4%, p = 0.004, effect size = 0.56), accompanied by increases in tendon length (5.7%, p = 0.039, effect size = 0.57; r = 0.40). No associations between the changes in muscle or tendon lengths and the changes in the stretch reflexes were found. We conclude that intramuscular BoNT-A injections reduced stretch reflexes in the MG accompanied by an increase in resting muscle belly length, whereas casting resulted in increased dorsiflexion without any changes to the muscle length. This supports the need for further investigation on the effect of the combined treatments and the development of treatments that more effectively lengthen the muscle

    Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms

    Get PDF
    We performed a whole-transcriptome analysis of miconazole-treated Candida albicans biofilms, using RNA-sequencing. Our aim was to identify molecular pathways employed by biofilm cells of this pathogen to resist action of the commonly used antifungal miconazole. As expected, genes involved in sterol biosynthesis and genes encoding drug efflux pumps were highly induced in biofilm cells upon miconazole treatment. Other processes were affected as well, including the electron transport chain (ETC), of which eight components were transcriptionally downregulated. Within a diverse set of 17 inhibitors/inducers of the transcriptionally affected pathways, the ETC inhibitors acted most synergistically with miconazole against C. albicans biofilm cells. Synergy was not observed for planktonically growing C. albicans cultures or when biofilms were treated in oxygen-deprived conditions, pointing to a biofilm-specific oxygen-dependent tolerance mechanism. In line, a correlation between miconazole's fungicidal action against C. albicans biofilm cells and the levels of superoxide radicals was observed, and confirmed both genetically and pharmacologically using a triple superoxide dismutase mutant and a superoxide dismutase inhibitor N-N'-diethyldithiocarbamate, respectively. Consequently, ETC inhibitors that result in mitochondrial dysfunction and affect production of reactive oxygen species can increase miconazole's fungicidal activity against C. albicans biofilm cells

    Reliability of Processing 3-D Freehand Ultrasound Data to Define Muscle Volume and Echo-intensity in Pediatric Lower Limb Muscles with Typical Development or with Spasticity

    Get PDF
    This investigation assessed the processer reliability of estimating muscle volume and echo-intensity of the rectus femoris, tibialis anterior and semitendinosus. The muscles of 10 typically developing children (8.15 [1.40] y) and 15 children with spastic cerebral palsy (7.67 [3.80] y; Gross Motor Function Classification System I = 5, II = 5, III = 5) were scanned with 3-D freehand ultrasonography. For the intra-processer analysis, the intra-class correlations coefficients (ICCs) for muscle volume ranged from 0.943–0.997, with relative standard errors of measurement (SEM%) ranging from 1.24%–8.97%. For the inter-processer analysis, these values were 0.853 to 0.988 and 3.47% to 14.02%, respectively. Echo-intensity had ICCs >0.947 and relative SEMs <4% for both analyses. Muscle volume and echo-intensity can be reliably extracted for the rectus femoris, semitendinosus and tibialis anterior in typically developing children and children with cerebral palsy. The need for a single processer to analyze all data is dependent on the size of the expected changes or differences
    • …
    corecore