33 research outputs found

    Challenges to the Methane and Waste Prevention Rule

    Get PDF

    Pricing Discrepancies in The Washington State Cherry Market

    Get PDF
    This research is focused on finding a pricing model for Washington State cherries. Each year a significant number of cherries are not sold, or are sold at a price close to or under cost, due to issues with program cherry purchases and pricing models. This research looks at two specific markets: the program fruit business and the wholesale markets. The program fruit business is comprised of companies such as Kroger, Wal-Mart, Costco, and others that “pre-purchase” their fruit at a specific price for delivery at a later date, much like a futures market for other commodities. The wholesale market, also referred to as the spot market, is made up of companies that purchase fruit for immediate delivery after it has already been packaged. In recent years there has been a gap between the pricing of wholesale and program markets. Specifically, the fruit that is sold to program business is at a price high enough that wholesale customers are able to sell fruit to traditional program customers at a lower price than the initial firm selling the fruit. The issue is fairly clear: firms are undercutting their own business by not being able to determine the correct pricing for program and wholesale business

    Average luminosity distance in inhomogeneous universes

    Full text link
    The paper studies the correction to the distance modulus induced by inhomogeneities and averaged over all directions from a given observer. The inhomogeneities are modeled as mass-compensated voids in random or regular lattices within Swiss-cheese universes. Void radii below 300 Mpc are considered, which are supported by current redshift surveys and limited by the recently observed imprint such voids leave on CMB. The averaging over all directions, performed by numerical ray tracing, is non-perturbative and includes the supernovas inside the voids. Voids aligning along a certain direction produce a cumulative gravitational lensing correction that increases with their number. Such corrections are destroyed by the averaging over all directions, even in non-randomized simple cubic void lattices. At low redshifts, the average correction is not zero but decays with the peculiar velocities and redshift. Its upper bound is provided by the maximal average correction which assumes no random cancelations between different voids. It is described well by a linear perturbation formula and, for the voids considered, is 20% of the correction corresponding to the maximal peculiar velocity. The average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximal one after a single void diameter. That is traced to cancellations between the corrections from the fronts and backs of different voids. All that implies that voids cannot imitate the effect of dark energy unless they have radii and peculiar velocities much larger than the currently observed. The results obtained allow one to readily predict the redshift above which the direction-averaged fluctuation in the Hubble diagram falls below a required precision and suggest a method to extract the background Hubble constant from low redshift data without the need to correct for peculiar velocities.Comment: 34 pages, 21 figures, matches the version accepted in JCA

    Cosmological evolution of interacting dark energy in Lorentz violation

    Full text link
    The cosmological evolution of an interacting scalar field model in which the scalar field interacts with dark matter, radiation, and baryon via Lorentz violation is investigated. We propose a model of interaction through the effective coupling ÎČˉ\bar{\beta}. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar field dark energy exist and baryons are sub dominant. Secondly, the model also allows the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through ÎČˉ\bar{\beta}. In particular, we consider a simple case where ÎČˉ\bar{\beta} has a quadratic form and has a good agreement with the modified Λ\LambdaCDM and quintessence models. Finally, we also calculate the first post--Newtonian parameters for our model.Comment: 14 pages, published versio

    Quantum Cosmological Relational Model of Shape and Scale in 1-d

    Full text link
    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1-d to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues 1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schrodinger interpretation and records theory). 2) In quantum cosmology, such as in the investigation of uniform states, robustness, and the qualitative understanding of the origin of structure formation.Comment: References and some more motivation adde

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    The Formation of the First Stars in the Universe

    Full text link
    In this review, I survey our current understanding of how the very first stars in the universe formed, with a focus on three main areas of interest: the formation of the first protogalaxies and the cooling of gas within them, the nature and extent of fragmentation within the cool gas, and the physics -- in particular the interplay between protostellar accretion and protostellar feedback -- that serves to determine the final stellar mass. In each of these areas, I have attempted to show how our thinking has developed over recent years, aided in large part by the increasing ease with which we can now perform detailed numerical simulations of primordial star formation. I have also tried to indicate the areas where our understanding remains incomplete, and to identify some of the most important unsolved problems.Comment: 74 pages, 4 figures. Accepted for publication in Space Science Review

    Binary and Millisecond Pulsars

    Full text link
    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.Comment: 77 pages, 30 figures, available on-line at http://www.livingreviews.org/lrr-2005-
    corecore