24 research outputs found

    CD36 maintains the gastric mucosa and associates with gastric disease

    Get PDF
    The gastric epithelium is often exposed to injurious elements and failure of appropriate healing predisposes to ulcers, hemorrhage, and ultimately cancer. We examined the gastric function of CD36, a protein linked to disease and homeostasis. We used the tamoxifen model of gastric injury in mice null for Cd36 (Cd3

    Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells

    Get PDF
    Disruption of lymphatic lipid transport is linked to obesity and type 2 diabetes (T2D), but regulation of lymphatic vessel function and its link to disease remain unclear. Here we show that intestinal lymphatic endothelial cells (LECs) have an increasing CD36 expression from lymphatic capillaries (lacteals) to collecting vessels, and that LEC CD36 regulates lymphatic integrity and optimizes lipid transport. Inducible deletion of CD36 in LECs in adult mice (Cd36(ΔLEC)) increases discontinuity of LEC VE-cadherin junctions in lacteals and collecting vessels. Cd36(ΔLEC) mice display slower transport of absorbed lipid, more permeable mesenteric lymphatics, accumulation of inflamed visceral fat and impaired glucose disposal. CD36 silencing in cultured LECs suppresses cell respiration, reduces VEGF-C-mediated VEGFR2/AKT phosphorylation and destabilizes VE-cadherin junctions. Thus, LEC CD36 optimizes lymphatic junctions and integrity of lymphatic lipid transport, and its loss in mice causes lymph leakage, visceral adiposity and glucose intolerance, phenotypes that increase risk of T2D

    CD36 maintains the gastric mucosa and associates with gastric disease.

    Get PDF
    The gastric epithelium is often exposed to injurious elements and failure of appropriate healing predisposes to ulcers, hemorrhage, and ultimately cancer. We examined the gastric function of CD36, a protein linked to disease and homeostasis. We used the tamoxifen model of gastric injury in mice null for Cd36 (Cd36-/-), with Cd36 deletion in parietal cells (PC-Cd36-/-) or in endothelial cells (EC-Cd36-/-). CD36 expresses on corpus ECs, on PC basolateral membranes, and in gastrin and ghrelin cells. Stomachs of Cd36-/- mice have altered gland organization and secretion, more fibronectin, and inflammation. Tissue respiration and mitochondrial efficiency are reduced. Phospholipids increased and triglycerides decreased. Mucosal repair after injury is impaired in Cd36-/- and EC-Cd36-/-, not in PC-Cd36-/- mice, and is due to defect of progenitor differentiation to PCs, not of progenitor proliferation or mature PC dysfunction. Relevance to humans is explored in the Vanderbilt BioVu using PrediXcan that links genetically-determined gene expression to clinical phenotypes, which associates low CD36 mRNA with gastritis, gastric ulcer, and gastro-intestinal hemorrhage. A CD36 variant predicted to disrupt an enhancer site associates (p < 10-17) to death from gastro-intestinal hemorrhage in the UK Biobank. The findings support role of CD36 in gastric tissue repair, and its deletion associated with chronic diseases that can predispose to malignancy

    Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    No full text
    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt)/(gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt)/(gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt)/(gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics

    Nesprin-2 mediated nuclear trafficking and its clinical implications

    No full text
    Nuclear translocation of proteins has a crucial role in the pathogenesis of cancer, Alzheimer disease and viral infections. A complete understanding of nuclear trafficking mechanisms is therefore necessary in order to establish effective intervention strategies. Here we elucidate the role of Nesprin-2 in Ca2+/Calmodulin mediated nuclear transport. Nesprin-2 is an actin-binding nuclear envelope (NE) protein with roles in maintaining nuclear structure and location, regulation of transcription and mechanotransduction. Upon depletion of Nesprin-2 using shRNA, HaCaT cells show abnormal localization of the shuttling proteins BRCA1 and NF-B. We show that their nuclear transport is unlikely due to the canonical RAN mediated nuclear import, but rather to a RAN independent Ca2+/Calmodulin driven mechanism involving Nesprin-2. We report novel interactions between the actin-binding domain of Nesprin-2 and Calmodulin and between the NLS containing region of BRCA1 and Calmodulin. Strikingly, displacing Nesprins from the NE resulted in increased steady state Ca2+ concentrations in the cytoplasm suggesting a previously unidentified role of Nesprins in Ca2+ regulation. On comparing Nesprin-2 and BRCA1 localization in the ovarian cancer cell lines SKOV-3 and Caov-3, Nesprin-2 and BRCA1 were localized to the NE envelope and the nucleus in SKOV-3, respectively, and to the cytoplasm in Caov-3 cells. Fibroblasts obtained from EDMD5 (Emery Dreifuss muscular dystrophy) patients showed loss of Nesprin-2 from the nuclear envelope, corresponding reduced nuclear localization of BRCA1 and enhanced cytoplasmic Ca2+. Taken together, the data suggests a novel role of Nesprin-2 in Ca2+/Calmodulin mediated nuclear trafficking and provides new insights which can guide future therapies

    The C-Terminal SynMuv/DdDUF926 Domain Regulates the Function of the N-Terminal Domain of DdNKAP

    No full text
    NKAP (NF-kappa B activating protein) is a highly conserved SR (serine/arginine-rich) protein involved in transcriptional control and splicing in mammals. We identified DdNKAP, the Dictyostelium discoideum ortholog of mammalian NKAP, as interacting partner of the nuclear envelope protein SUN-1. DdNKAP harbors a number of basic RDR/RDRS repeats in its N-terminal domain and the SynMuv/DUF926 domain at its C-terminus. We describe a novel and direct interaction between DdNKAP and Prp19 (Pre mRNA processing factor 19) which might be relevant for the observed DdNKAP ubiquitination. Genome wide analysis using cross-linking immunoprecipitation-high-throughput sequencing (CLIP-seq) revealed DdNKAP association with intergenic regions, exons, introns and non-coding RNAs. Ectopic expression of DdNKAP and its domains affects several developmental aspects like stream formation, aggregation, and chemotaxis. We conclude that DdNKAP is a multifunctional protein, which might influence Dictyostelium development through its interaction with RNA and RNA binding proteins. Mutants overexpressing full length DdNKAP and the N-terminal domain alone (DdN-NKAP) showed opposite phenotypes in development and opposite expression profiles of several genes and rRNAs. The observed interaction between DdNNKAP and the DdDUF926 domain indicates that the DdDUF926 domain acts as negative regulator of the N-terminus

    NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins

    No full text
    NKAP is a highly conserved protein with roles in transcriptional repression, T-cell development, maturation and acquisition of functional competency and maintenance and survival of adult hematopoietic stem cells. Here we report the novel role of NKAP in splicing. With NKAP-specific antibodies we found that NKAP localizes to nuclear speckles. NKAP has an RS motif at the N-terminus followed by a highly basic domain and a DUF 926 domain at the C-terminal region. Deletion analysis showed that the basic domain is important for speckle localization. In pull-down experiments, we identified RNA-binding proteins, RNA helicases and splicing factors as interaction partners of NKAP, among them FUS/TLS. The FUS/TLS-NKAP interaction takes place through the RS domain of NKAP and the RGG1 and RGG3 domains of FUS/TLS. We analyzed the ability of NKAP to interact with RNA using in vitro splicing assays and found that NKAP bound both spliced messenger RNA (mRNA) and unspliced pre-mRNA. Genome-wide analysis using crosslinking and immunoprecipitation-seq revealed NKAP association with U1, U4 and U5 small nuclear RNA, and we also demonstrated that knockdown of NKAP led to an increase in pre-mRNA percentage. Our results reveal NKAP as nuclear speckle protein with roles in RNA splicing and processing

    CAP2 is a regulator of the actin cytoskeleton and its absence changes infiltration of inflammatory cells and contraction of wounds

    No full text
    Cyclase associated protein (CAP) is a highly conserved protein with roles in actin dynamics and many cellular processes. Two isoforms exist in higher eukaryotes, CAP1 and CAP2. CAP1 is ubiquitously expressed whereas CAP2 shows restricted tissue distribution. In mice, ablation of CAP2 leads to development of cardiomyopathy. CAP2 is expressed in skin. In human skin its expression is increased in wounds. To elucidate the role of CAP2 in skin upon injury, we studied the wound healing in CAP2 deficient mice and found altered wound healing response presumably resulting from reduced levels of alpha-SMA, decreased macrophage infiltration and slower neovascularization. In vitro cultured Cap2 deficient keratinocytes showed reduced velocity and a delay in scratch closure. The analysis of primary mutant fibroblasts also showed reduced velocity and less contractibility. They had extended protrusions and more focal adhesions. In addition the F-actin content was increased keeping the total actin content unaltered. Mutant fibroblasts furthermore exhibited an altered response during recovery from drug-induced disruption of the actin cytoskeleton. Interestingly, CAP1 was upregulated in knockout unwounded skin and in wounds which might partially compensate for the loss of CAP2. Taken together, our studies reveal a role for CAP2 in wound healing which may be based on its function as a regulator of the actin cytoskeleton. (C) 2014 Elsevier GmbH. All rights reserved

    Depletion of Nesprin-2 is associated with an embryonic lethal phenotype in mice

    Get PDF
    Nesprin-2 is a nuclear envelope component and provides a link between cytoskeletal components of the cytoplasm and the nucleoplasm. Several isoforms are generated from its gene Syne2. Loss of the largest isoform Nesprin-2 Giant in mice is associated with a skin phenotype and altered wound healing, loss of C-terminal isoforms in mice leads to cardiomyopathies and neurological defects. Here we attempted to establish mice with an inducible knockout of all Nesprin-2 isoforms by inserting shRNA encoding sequences targeting the N- and C-terminus into the ROSA26 locus of mice. This caused early embryonic death of the animals harboring the mutant allele, which was presumably due to leaky expression of the shRNAs. Mutant embryos were only observed before E13. They had an altered appearance and were smaller in size than their wild type littermates. From this we conclude that the Nesprin-2 gene function is crucial during embryonic growth, differentiation and organogenesis
    corecore