396 research outputs found

    Exploring sensitivity and resolution for cell tracking with Magnetic Particle Imaging: the effects of cell proliferation and intracellular nanoparticle relaxation

    Get PDF
    Magnetic particle imaging (MPI) is an emerging modality that directly detects SPIOs.our first aim is to quantify the dilution of SPIOs in breast cancer cells in vitro using MPI. MPI signal is generated from a combination of Néel (internal rotation of magnetization) and Brownian (physical rotation of nanoparticle) relaxation. Brownian relaxation of SPIO is influenced by the nanoparticle’s surroundings and we hypothesize this may have implications for detecting partially immobilized intracellular SPIOs. A second aim is to determine how MPI signal and resolution change when SPIOs are intracellular (live cells) compared to free SPIOs (lysed cells). A reduction in MPI signal was measured from SPIO-labeled 4T1 cells following proliferation in vitro. Our measurements of intracellular iron are in close agreement with a theoretical reduction of 66%( day 1) and 87% (day 2). Future work will examine this in vivo. As ferucarbotran was incorporated into MSC, a reduction in MPI sensitivity and improvement in resolution were measured for lysed cells. MPI cell tracking is in its infancy and these studies contribute important knowledge towards monitoring proliferative cells in vivo and optimizing resolution and sensitivity for cell detectio

    Monitoring Training Load Using the Acute: Chronic Workload Ratio in Non-Elite Intercollegiate Female Athletes

    Get PDF
    Monitoring training load and its progression in athletes is important to optimise adaptations to training while simultaneously preventing injury. A recent development in this field is the acute: chronic workload ratio (ACWR), which track s average acute training load against average chronic training load to describe training load progression. Furthermore, a new method of calculating the ACWR has been developed using exponentially weighted moving averages (EWMA) which accounts for the decay of fitness and fatigue. This study sought to investigate the relationship between the EWMA and ACWR (based upon session rating of perceived exertion (sRPE)), and injury risk in intercollegiate female athletes (N=4). Participants performed adductor squeeze tests (ASTs) once a week for 8 week s, while their training and wel lness were monitored with sRPE and a daily questionnaire respectively. A hierarchical regression demonstrated that monitoring of average sleep length, average stress, sRPE work loads and an EWMA provided the best model for predicting injury risk in athletes (R2 = 0.47). The findings indicate that the EWMA may be a effective training load monitoring tool than the ACWR model

    Tracking the fate of stem cell implants with fluorine-19 MRI.

    Get PDF
    BACKGROUND: In this study we used cellular magnetic resonance imaging (MRI) to detect mesenchymal stem cells (MSC) labeled with a Fluorine-19 (19F) agent. 19F-MRI offers unambiguous detection and in vivo quantification of labeled cells. METHODS: We investigated two common stem cell transplant mouse models: an immune competent, syngeneic transplant model and an immune compromised, xenograft transplant model. 19F labelled stem cells were implanted intramuscularly into the hindlimb of healthy mice. The transplant was then monitored for up to 17 days using 19F-MRI, after which the tissue was excised for fluorescence microscopy and immunohistochemisty. RESULTS: Immediately following transplantation, 19F-MRI quantification correlated very well with the expected cell number in both models. The 19F signal decreased over time in both models, with a more rapid decrease in the syngeneic model. By endpoint, only 2/7 syngeneic mice had any detectable 19F signal. In the xenograft model, all mice had detectable signal at endpoint. Fluorescence microscopy and immunohistochemistry were used to show that the 19F signal was related to the presence of bystander labeled macrophages, and not original MSC. CONCLUSIONS: Our results show that 19F-MRI is an excellent tool for verifying the delivery of therapeutic cells early after transplantation. However, in certain circumstances the transfer of cellular label to other bystander cells may confuse interpretation of the long-term fate of the transplanted cells

    In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model.

    Get PDF
    Brain metastases are an important clinical problem. Few animal models exist for melanoma brain metastases; many of which are not clinically relevant. Longitudinal MRI was implemented to examine the development of tumors in a clinically relevant mouse model of melanoma brain metastases. Fifty thousand human metastatic melanoma (A2058) cells were injected intracardially into nude mice. Three Tesla MRI was performed using a custom-built gradient insert coil and a mouse solenoid head coil. Imaging was performed on consecutive days at four time points. Tumor burden and volumes of metastases were measured from balanced steady-state free precession image data. Metastases with a disrupted blood-tumor barrier were identified from T1-weighted spin echo images acquired after administration of gadopentetic acid (Gd-DTPA). Metastases permeable to Gd-DTPA showed signal enhancement. The number of enhancing metastases was determined by comparing balanced steady-state free precession images with T1-weighted spin echo images. After the final imaging session, ex-vivo permeability and histological analyses were carried out. Imaging showed that both enhancing and nonenhancing brain metastases coexist in the brain, and that most metastases switched from the nonenhancing to the enhancing phenotype. Small numbers of brain metastases were enhancing when first detected by MRI and remained enhancing, whereas other metastases remained nonenhancing to Gd-DTPA throughout the experiment. No clear relationship existed between the permeability of brain metastases and size, brain location and age. Longitudinal in-vivo MRI is key to studying the complex and dynamic processes of metastasis and changes in the blood-tumor barrier permeability, which may lead to a better understanding of the variable responses of brain metastases to treatments

    Comparing the MRI Appearance of the Lymph Nodes and Spleen in Wild-Type and Immuno-Deficient Mouse Strains

    Get PDF
    The goal of this study was to investigate the normal MRI appearance of lymphoid organs in immuno-competent and immuno-deficient mice commonly used in research. Four mice from each of four different mouse strains (nude, NOG, C57BL/6, CB-17 SCID (SCID)) were imaged weekly for one month. Images were acquired with a 3D balanced steady state free precession (bSSFP) sequence. The volume of the lymph nodes and spleens were measured from MR images. In images of nude and SCID mice, lymph nodes sometimes contained a hyperintense region visible on MRI images. Volumes of the nodes were highly variable in nude mice. Nodes in SCID mice were smaller than in nude or C57Bl/6 mice (p<0.0001). Lymph node volumes changed slightly over time in all strains. The spleens of C57Bl/6 and nude mice were similar in size and appearance. Spleens of SCID and NOG mice were significantly smaller (p<0.0001) and abnormal in appearance. The MRI appearance of the normal lymph nodes and spleen varies considerably in the various mouse strains examined in this study. This is important to recognize in order to avoid the misinterpretation of MRI findings as abnormal when these strains are used in MRI imaging studies

    Glial activation positron emission tomography imaging in radiation treatment of breast cancer brain metastases

    Get PDF
    Brain metastases affect more breast cancer patients than ever before due to increased overall patient survival with improved molecularly targeted treatments. Approximately 25–34% of breast cancer patients develop brain metastases in their lifetime. Due to the blood–brain barrier (BBB), the standard treatment for breast cancer brain metastases (BCBM) is surgery, stereotactic radiosurgery (SRS) and/or whole brain radiation therapy (WBRT). At the cost of cognitive side effects, WBRT has proven efficacy in treating brain metastases when used with local therapies such as SRS and surgery. This review investigated the potential use of glial activation positron emission tomography (PET) imaging for radiation treatment of BCBM. In order to put these studies into context, we provided background on current radiation treatment approaches for BCBM, our current understanding of the brain microenvironment, its interaction with the peripheral immune system, and alterations in the brain microenvironment by BCBM and radiation. We summarized preclinical literature on the interactions between glial activation and cognition and clinical studies using translocator protein (TSPO) PET to image glial activation in the context of neurological diseases. TSPO-PET is not employed clinically in assessing and guiding cancer therapies. However, it has gained traction in preclinical studies where glial activation was investigated from primary brain cancer, metastases and radiation treatments. Novel glial activation PET imaging and its applications in preclinical studies using breast cancer models and glial immunohistochemistry are highlighted. Lastly, we discuss the potential clinical application of glial activation imaging to improve the therapeutic ratio of radiation treatments for BCBM

    Half brain irradiation in a murine model of breast cancer brain metastasis: Magnetic resonance imaging and histological assessments of dose-response

    Get PDF
    Background: Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases\u27 responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Methods: Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. Results: In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Conclusions: Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases

    Randomised pragmatic waitlist trial with process evaluation investigating the effectiveness of peer support after brain injury: protocol.

    Get PDF
    Traumatic brain injury (TBI) is an important global health problem. Formal service provision fails to address the ongoing needs of people with TBI and their family in the context of a social and relational process of learning to live with and adapt to life after TBI. Our feasibility study reported peer support after TBI is acceptable to both mentors and mentees with reported benefits indicating a high potential for effectiveness and likelihood of improving outcomes for both mentees and their mentors. To (a) test the effectiveness of a peer support intervention for improving participation, health and well-being outcomes after TBI and (b) determine key process variables relating to intervention, context and implementation to underpin an evidence-based framework for ongoing service provision. A randomised pragmatic waitlist trial with process evaluation. Mentee participants (n=46) will be included if they have moderate or severe TBI and are no more than 18 months post-injury. Mentor participants (n=18) will be people with TBI up to 6 years after injury, who were discharged from inpatient rehabilitation at least 1 year prior. The primary outcome will be mentee participation, measured using the Impact on Participation and Autonomy questionnaire after 22 weeks. Primary analysis of the continuous variables will be analysis of covariance with baseline measurement as a covariate and randomised treatment as the main explanatory predictor variable at 22 weeks. Process evaluation will include analysis of intervention-related data and qualitative data collected from mentors and service coordinators. Data synthesis will inform the development of a service framework for future implementation. Ethics approval has been obtained from the New Zealand Health and Disability Ethics Committee (19/NTB/82) and Auckland University of Technology Ethics Committee (19/345). Dissemination of findings will be via traditional academic routes including publication in internationally recognised peer-reviewed journals. ACTRN12619001002178. [Abstract copyright: © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene

    Get PDF
    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2+ breast cancer
    corecore