25 research outputs found

    Rancang Bangun Alat Pereduksi Particulate Matter (PM) Gas Buang Mesin Diesel Dengan Metode Cyclone

    Full text link
    Gas buang dari hasil proses pembakaran berpengaruh terhadap pencemaran udara dan lingkungan khususnya motor diesel. Proses pembakaran bahan bakar pada motor bakar menghasilkan gas buang yang mengandung unsur Nitrogen Oksida (NOx), Sulfur Oksida (SOx), Particulate Matter (PM), Karbon Monoksida (CO), dan Hidrokarbon (HC) yang bersifat mencemari udara. Agar motor diesel yang digunakan tidak mengakibatkan pencemaran udara berlebih, perlu dilakukan suatu penelitian menurunkan emisi gas buang motor diesel dengan pemilihan teknologi dan metode yang tepat. Penelitian cylone separator ini berdasarkan prinsip kerja separator yang memanfaatkan gaya sentrifugal dan perbedaan massa jenis. Karena massa jenis PM lebih besar dari pada massa jenis gas buang, PM akan terpisah dari gas buang karena gaya sentrifugal dan adanya perbedaan massa jenis. Pada tahap awal penelitian ini yaitu dibuat desain dan kemudian dilakukan CFD analisis untuk dicari yang paling efisien dari segi kecepatan dan jenis aliran. Pada hasil analisa CFD disimpulkan bahwa metode Perry lebih efisien dibanding 3 metode yang lain. Setelah didapat desain yang efisien maka dilanjutkan dengan pembuatan prototipe, untuk selanjutnya dilakukan uji ekperimen. Berdasar uji eksperimen, cyclone separator dapar mereduksi PM gas Buang motor diesel pada beban 2000 watt sebesar 8,71%. Sedangkan pada beban 2500 watt, cylone separator dapat mereduksi PM sebesar 34,49%

    Comparison of beat frequency before and after adrenaline treatment.

    No full text
    <p>A) Full length recording. B) Zoomed recording before addition of adrenaline. C) Zoomed recording after adrenaline. D) Quantitative comparison of beats per min, data represents mean ± SEM. A paired students t-test was performed and the difference found to be significant, *p<0.05, n = 4.</p

    Assessment of the effect of noise on predicted conduction velocity.

    No full text
    <p>A) FP plots, heat maps and conduction velocity vector maps are shown for a data set with increasing amounts of white noise added. B) Plots of absolute error with indicated noise level when compared to no added noise. Error bars represent SEM, n = 5.</p

    Examples of voltage plots exported form MultiElec.

    No full text
    <p>A) Full length recording for all sixty electrodes. B) A full length recordings for a single electrode. C-E) Sliders enable the user to zoom and focus on a single event/wave front. F) Shows all sixty electrodes zoomed in on a single event. G) Shows single event with calculated activation time marked in green. Smoothed signal superimposed in red.</p

    Examples of heat maps produced by MultiElec.

    No full text
    <p>A) Heat map with activation times at each electrode. B) Heat map with isolines.</p

    Screen shot of MultiElecs’ GUI.

    No full text
    <p>The ‘view electrode’ panel allows the user to select individual electrode to be viewed. The ‘silence electrode’ panel allows the removal of selected electrodes from analysis. The top left plot shows the entire recording for the selected electrode. The top right plot allows the user to zoom in at a chosen time for analysis of the field potential (green dot marks the calculated activation time). The bottom right plot allows the user to view the voltage of the entire set of electrodes change with time.</p

    Comparison of conduction velocities before and after adrenaline treatment.

    No full text
    <p>A and B) Heat maps with activation times and conduction velocity vector plots for non-treated and adrenaline-treated cultures, respectively. A and B from two independent experiments.</p

    Flow chart of MultiElec work flow.

    No full text
    <p>On execution of the program the GUI is opened. The user can then select data to be loaded. Once the data is loaded the program will pre-process the data (filters noise). The user can then select an electrode and focus on a particular signal event. Once a signal event is in view the user can request that activation times are calculated and activation time heat maps are produced. Using these initial heat maps the user can silence problem electrodes and repeat the process until all problem electrodes are silenced. Once appropriate electrodes are silenced conduction, velocities and subsequent velocity vector maps can be produced. At various points during this process figures can be produced and saved for further reference or publication.</p

    Still frames of a 3D movie recording showing signal progression across electrodes.

    No full text
    <p>9ms recording shows the signal initiation at the bottom left corner of the array and progress outwards.</p

    The MMP3 gene 5A allele more readily interacts with p50 and p65, than the 6A allele.

    No full text
    <p>Chromatin proteins and DNA in THP1 cells were cross-linked in1% formaldehyde for 10 minutes. Cells were then lysed, and the lysate sonicated to reduce DNA length to 200–1000 bp. The sonicated chromatin was subjected to immunoprecipitation using a p50 or p65 antibody, or incubated with a rabbit IgG, followed by PCR amplification of 179 bp and 180 bp DNA fragments surrounding the <i>MMP3</i> gene 5A/6A site using fluorescence labelled primers. The PCR amplicons were analyzed using an ABI 3730xl analyzer and Genemapper software. Three independent experiments were performed. (A). Representative output from the Genemapper programme. The panels from top to bottom represent input chromatin DNA, chromatin immunoprecipitated with the p50 antibody, and chromatin immunoprecipitated with the p65 antibody. (B). Chart shows mean (± standard error of mean) of the relative peak heights of the 5A and 6A alleles in the p50 and p65 antibody precipitates, standardized against the relative peak heights of the 5A and 6A alleles in the input DNA, in three independent experiments. * denotes p<0.05 comparing 5A versus 6A alleles.</p
    corecore