97 research outputs found

    Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures.

    Get PDF
    OBJECTIVES: This study sought to define contemporary trends in permanent pacemaker use by analyzing a large national database. BACKGROUND: The Medicare National Coverage Determination for permanent pacemaker, which emphasized single-chamber pacing, has not changed significantly since 1985. We sought to define contemporary trends in permanent pacemaker use by analyzing a large national database. METHODS: We queried the Nationwide Inpatient Sample to identify permanent pacemaker implants between 1993 and 2009 using the International Classification of Diseases-Ninth Revision-Clinical Modification procedure codes for dual-chamber (DDD), single-ventricular (VVI), single-atrial (AAI), or biventricular (BiV) devices. Annual permanent pacemaker implantation rates and patient demographics were analyzed. RESULTS: Between 1993 and 2009, 2.9 million patients received permanent pacemakers in the United States. Overall use increased by 55.6%. By 2009, DDD use increased from 62% to 82% (p \u3c 0.001), whereas single-chamber ventricular pacemaker use fell from 36% to 14% (p = 0.01). Use of DDD devices was higher in urban, nonteaching hospitals (79%) compared with urban teaching hospitals (76%) and rural hospitals (72%). Patients with private insurance (83%) more commonly received DDD devices than Medicaid (79%) or Medicare (75%) recipients (p \u3c 0.001). Patient age and Charlson comorbidity index increased over time. Hospital charges ($2011) increased 45.3%, driven by the increased cost of DDD devices. CONCLUSIONS: There is a steady growth in the use of permanent pacemakers in the United States. Although DDD device use is increasing, whereas single-chamber ventricular pacemaker use is decreasing. Patients are becoming older and have more medical comorbidities. These trends have important health care policy implications

    Modelling a two-stage adult population screen for autosomal dominant familial hypercholesterolaemia: cross-sectional analysis within the UK Biobank

    Get PDF
    Background: Most people with autosomal dominant familial hypercholesterolaemia (FH) remain undetected, which represents a missed opportunity for coronary heart disease prevention. Objective: To evaluate the performance of two-stage adult population screening for FH. Design: Using data from UK Biobank, we estimated the screening performance of different low-density lipoprotein cholesterol (LDL-C) cut-offs (stage 1) to select adults for DNA sequencing (stage 2) to identify individuals with FH-causing variants inLDLR, APOB, PCSK9andAPOE. We estimated the number of additional FH cases detected by cascade testing of first-degree relatives of index cases and compared the overall approach with screening in childhood. Setting: UK Biobank. Participants: 140 439 unrelated participants of European ancestry from UK Biobank with information on circulating LDL-C concentration and exome sequence. Main outcome measures: For different LDL-C cut-offs, we estimated the detection and false-positive rate, the proportion of individuals who would be referred for DNA sequencing (stage 1 screen positive rate), and the number of FH cases identified by population screening followed by cascade testing. Results: We identified 488 individuals with an FH-causing variant and 139 951 without (prevalence 1 in 288). An LDL-C cut-off of >4.8 mmol/L had a stage 1 detection rate (sensitivity) of 40% (95% CI 36 to 44%) for a false-positive rate of 10% (95% CI 10 to 11%). Detection rate increased at lower LDL-C cut-offs but at the expense of higher false-positive and screen positive rates, and vice versa. Two-stage screening of 100 000 adults using an LDL-C cut-off of 4.8 mmol/L would generate 10 398 stage 1 screen positives for sequencing, detect 138 FH cases and miss 209. Up to 207 additional cases could be detected throughtwo-generationcascade testing of first-degree relatives. By comparison, based on previously published data, childhood screening followed by cascade testing was estimated to detect nearly three times as many affected individuals for around half the sequencing burden. Conclusions: Two-stage adult population screening for FH could help achieve the 25% FH case detection target set in the National Health Service Long Term Plan, but less efficiently than childhood screening and with a greater sequencing requirement

    16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008.

    Get PDF
    OBJECTIVES: We analyzed the infection burden associated with the implantation of cardiac implantable electrophysiological devices (CIEDs) in the United States for the years 1993 to 2008. BACKGROUND: Recent data suggest that the rate of infection following CIED implantation may be increasing. METHODS: The Nationwide Inpatient Sample (NIS) discharge records were queried between 1993 and 2008 using the 9th Revision of the International Classification of Diseases (ICD-9-CM). CIED infection was defined as either: 1) ICD-9 code for device-related infection (996.61) and any CIED procedure or removal code; or 2) CIED procedure code along with systemic infection. Patient health profile was evaluated by coding for renal failure, heart failure, respiratory failure, and diabetes mellitus. The infection burden and patient health profile were calculated for each year, and linear regression was used to test for changes over time. RESULTS: During the study period (1993 to 2008), the incidence of CIED infection was 1.61%. The annual rate of infections remained constant until 2004, when a marked increase was observed, which coincided with an increase in the incidence of major comorbidities. This was associated with a marked increase in mortality and in-hospital financial charges. CONCLUSIONS: The infection burden associated with CIED implantation is increasing over time and is associated with prolonged hospital stays and high financial costs

    Performance of polygenic risk scores in screening, prediction, and risk stratification: secondary analysis of data in the Polygenic Score Catalog

    Get PDF
    OBJECTIVE: To clarify the performance of polygenic risk scores in population screening, individual risk prediction, and population risk stratification. DESIGN: Secondary analysis of data in the Polygenic Score Catalog. SETTING: Polygenic Score Catalog, April 2022. Secondary analysis of 3915 performance metric estimates for 926 polygenic risk scores for 310 diseases to generate estimates of performance in population screening, individual risk, and population risk stratification. PARTICIPANTS: Individuals contributing to the published studies in the Polygenic Score Catalog. MAIN OUTCOME MEASURES: Detection rate for a 5% false positive rate (DR5) and the population odds of becoming affected given a positive result; individual odds of becoming affected for a person with a particular polygenic score; and odds of becoming affected for groups of individuals in different portions of a polygenic risk score distribution. Coronary artery disease and breast cancer were used as illustrative examples. RESULTS: For performance in population screening, median DR5 for all polygenic risk scores and all diseases studied was 11% (interquartile range 8-18%). Median DR5 was 12% (9-19%) for polygenic risk scores for coronary artery disease and 10% (9-12%) for breast cancer. The population odds of becoming affected given a positive results were 1:8 for coronary artery disease and 1:21 for breast cancer, with background 10 year odds of 1:19 and 1:41, respectively, which are typical for these diseases at age 50. For individual risk prediction, the corresponding 10 year odds of becoming affected for individuals aged 50 with a polygenic risk score at the 2.5th, 25th, 75th, and 97.5th centiles were 1:54, 1:29, 1:15, and 1:8 for coronary artery disease and 1:91, 1:56, 1:34, and 1:21 for breast cancer. In terms of population risk stratification, at age 50, the risk of coronary artery disease was divided into five groups, with 10 year odds of 1:41 and 1:11 for the lowest and highest quintile groups, respectively. The 10 year odds was 1:7 for the upper 2.5% of the polygenic risk score distribution for coronary artery disease, a group that contributed 7% of cases. The corresponding estimates for breast cancer were 1:72 and 1:26 for the lowest and highest quintile groups, and 1:19 for the upper 2.5% of the distribution, which contributed 6% of cases. CONCLUSION: Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance

    Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT

    Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT

    Novel features of ARS selection in budding yeast Lachancea kluyveri

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined.</p> <p>Results</p> <p>In this study we have isolated and characterized autonomously replicating sequences (ARSs) in <it>Lachancea kluyveri </it>- a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that <it>L. kluyveri </it>ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in <it>Saccharomyces cerevisiae</it>. Moreover, compared with <it>S. cerevisiae </it>and <it>K. lactis</it>, the replication licensing machinery in <it>L. kluyveri </it>seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all <it>S. cerevisiae </it>ARSs tested and most <it>Kluyveromyces lactis </it>ARSs. In contrast, only about half of the <it>L. kluyveri </it>ARSs function in <it>S. cerevisiae </it>and less than 10% function in <it>K. lactis</it>.</p> <p>Conclusions</p> <p>Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.</p

    Targeting histone deacetyalses in the treatment of B- and T-cell malignancies

    Get PDF
    HDAC inhibitors (HDACI) are now emerging as one of the most promising new classes of drugs for the treatment of select forms of non-Hodgkin’s lymphoma (NHL). They are particularly active in T-cell lymphomas, possibly hodgkin’s lymphoma and indolent B cell lymphomas. Presently, two of these agents, vorinostat and romidepsin, have been approved in the US for the treatment of relapsed and refractory cutaneous T cell lymphomas (CTCL). Initially, these agents were developed with the idea that they affected transcriptional activation and thus gene expression, by modulating chromatin condensation and decondensation. It is now clear that their effects go beyond chromatin and by affecting the acetylation status of histones and other intra-cellular proteins, they modify gene expression and cellular function via multiple pathways. Gene expression profiles and functional genetic analysis has led to further understanding of the various molecular pathways that are affected by these agents including cell cycle regulation, pathways of cellular proliferation, apoptosis and angiogenesis all important in lymphomagenesis. There is also increasing data to support the effects of these agents on T cell receptor and immune function which may explain the high level of activity of these agents in T cell lymphomas and hodgkin’s lymphoma. There is ample evidence of epigenetic dysregulation in lymphomas which may underlie the mechanisms of action of these agents but how these agents work is still not clear. Current HDAC inhibitors can be divided into at least four classes based on their chemical structure. At present several of these HDAC inhibitors are in clinical trials both as single agents and in combination with chemotherapy or other biological agents. They are easy to administer and are generally well tolerated with minimal side effects. Different dosing levels and schedules and the use of isospecific HDAC inhibitors are some of the strategies that are being employed to increase the therapeutic effect of these agents in the treatment of lymphomas. There may also be class differences that translate into specific activity against different lymphoma. HDAC inhibitors will likely be incorporated into combinations of targeted therapies both in the upfront and relapsed setting for lymphomas
    corecore