160 research outputs found

    Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: ultrafine particle pollution and age-related dose assessment

    Get PDF
    Aerosol measurements were carried out in a model room where both combustion (conventional and hand-rolled cigarettes, a cigar and tobacco pipe) and non-combustion (e-cigarette and IQOS®) devices were smoked. The data were used to estimate the dose of particles deposited in the respiratory systems of individuals from 3 months to 21 years of age using the multiple-path particle dosimetry (MPPD) model. Regardless of the smoking device, the highest doses were received by infants, which reached 9.88 ×108 particles/kg bw during a cigar smoking session. Moreover, 60% to 80% of the particles deposited in the head region of a 3-month-old infant were smaller than 100 nm and could be translocated to the brain via the olfactory bulb. The doses due to second-hand smoke from electronic devices were significantly lower, below 1.60 ×108 particles/kg bw, than those due to combustion devices. Dosimetry estimates were 50% to 110% higher for IQOS® than for e-cigarettes

    The astonishing 63Ni radioactivity reduction in radioactive wastes by means of ultrasounds application

    Get PDF
    Nowadays, the radioactive wastes production is certainly one of the main issues along with their storage. The most interesting way to treat them would certainly be the radioactivity reduction. In this paper we show that the 63Ni radioactivity reduction by ultrasounds is not a violation of the exponential decay law but can be explained by the Deformed Space–Time theory. The cavitation procedure under the DST conditions achieves a radioactivity decrease around 14% in 200 s. Comparing these results with the theoretical ones obtained by the decay law, we earn more than 20 years in the 63Ni radioactivity decrease. For confirming the data, ICP-MS measurements were performed on cavitated and no-cavitated samples: once again, the 14%-difference (with CV 5%) was obtained from the analyses of both samples. Even if the data are not definitive, the new idea is that a radioactive substance can be "normalized" by its transformation into a normal stable one without radiation emission overcoming the traditional approaches (dilution, inertization, radioactive transmutation with fast neutron irradiation) and avoiding the use of large deposits or big reactors. Our results may be considered as starting point to pave the way to new methods to treat useless harmful radioactive substances from nuclear or medicine industry

    Reference intervals for urinary cotinine levels and the influence of sampling time and other predictors on its excretion among italian schoolchildren

    Get PDF
    (1) Background: Environmental Tobacco Smoke (ETS) exposure remains a public health problem worldwide. The aims are to establish urinary (u-) cotinine reference values for healthy Italian children, to evaluate the role of the sampling time and of other factors on children’s u-cotinine excretion. (2) Methods: A cross-sectional study was performed on 330 children. Information on participants was gathered by a questionnaire and u-cotinine was determined in two samples for each child, collected during the evening and the next morning. (3) Results: Reference intervals (as the 2.5th and 97.5th percentiles of the distribution) in evening and morning samples were respectively equal to 0.98-4.29 and 0.91-4.50 µg L-1(ETS unexposed) and 1.39-16.34 and 1.49-20.95 µg L-1(ETS exposed). No statistical differences were recovered between median values found in evening and morning samples, both in ETS unexposed and exposed. Significant predictors of u-cotinine excretions were ponderal status according to body mass index of children (β = 0.202; p-value = 0.041 for evening samples; β = 0.169; p-value = 0.039 for morning samples) and paternal educational level (β = -0.258; p-value = 0.010; for evening samples; β = -0.013; p-value = 0.003 for morning samples). (4) Conclusions: The results evidenced the need of further studies for assessing the role of confounding factors on ETS exposure, and the necessity of educational interventions on smokers for rising their awareness about ETS

    Obsidian use in the mosaic of the St. Juvenal church, Narni (Italy): chemical characterization and origin

    Get PDF
    Tesserae from the mosaic on the front of the San Giovenale chapel inside the Narni Cathedral were analyzed through non-destructive XRF analysis for the characterization of both colouring matters and opacifiers of the glass matrix. Subsequently, the concentration of the elements present at trace levels (ÎĽg g-1) was determined by means of Instrumental Neutron Activation Analysis (INAA) for comparisons with obsidians of known provenance and well-studied micro-elemental composition, in order to identify the geographical origin of the obsidian used in this Middle Ages mosaic. The main result is that the black tesserae were made with obsidian fragments coming from the Sardinia deposits (probably, Arci Mountain site C)

    Impact of electronic alternatives to tobacco cigarettes on indoor air particular matter levels

    Get PDF
    An aerosol study was carried out in a test room measuring particulate matter (PM) with an aerodynamic diameter smaller than 10, 4, 2.5 and 1 m (PM10, PM4, PM2.5, PM1) before and during the use of electronic alternatives to tobacco cigarettes (EATC) IQOS®, GLO®, JUUL®, with dierent kinds of sticks/pods, as well as during the smoking of a conventional tobacco cigarette. The aerosol was mainly in the PM1 size range (>95%). All studied EATCs caused lower indoor PM1 concentrations than conventional tobacco cigarettes. Nevertheless, they determined a worsening of indoor-PM1 concentration that ranged from very mild for JUUL®—depending on the pod used—to considerably severe for IQOS® and GLO®. Median values ranged from 11.00 (Iqos3 and Juul2) to 337.5 g m3 (Iqos4). The high variability of particle loadings was attributed both to the type of stick/pod used and to the dierent way of smoking of volunteers who smoked/vaped during the experiments. Moreover, during vaping IQOS® and GLO® indoor PM1 concentrations reach levels by far higher than outdoor concentrations that range from 14 to 21 g m3, especially during the exhalation of the smoke. From these results emerge an urgent need of a legislative regulation limiting the use of such devices in public places

    regional deposition of submicrometer aerosol in the human respiratory system determined at 1 s time resolution of particle size distribution measurements

    Get PDF
    Submicrometer aerosol size number distributions have been measured in downtown Rome with 1 s time resolution. From these data, the particle deposition in the human respiratory system has been assessed for infants, children and adults under different exercise levels. The estimates are reported as size segregated percentages and as total particle numbers deposited. The greatest percentages of particles are deposited in the alveolar interstitial region. Deposited doses, expressed per unit body weight or per unit alveolar surface area, indicate that children and infants are more at risk than adults. Following vehicle exhausts, nucleation particle concentrations increase within a few seconds and decrease in the time scale of tens of seconds. In accordance with traffic cycles, such particles are very common during the day, and decrease at night, when accumulation mode particles are more prevalent. As a consequence, the exposure scenario, in proximity to traffic, may be represented by a sequence of short-term peak exposures. The appraisal of such brief exposures depends on the time resolution of measurements, being underestimated if aerosol measurements are performed with resolutions on the time scale of minutes. The health relevance of such exposure patterns needs to be investigated, and the relevant measurement averaging time should also be defined

    A Review of the Analytical Methods Based on Chromatography for Analyzing Glyphosate in Foods

    Get PDF
    Glyphosate is a pesticide widely used in agriculture, horticulture, and silviculture as well as around homes and gardens. It was introduced by Monsanto in the early 1970s, and it is a broad spectrum, nonselective, post-emergence herbicide that inhibits plants’ shikimic acid pathway. Glyphosate is considered as “difficult herbicide” in terms of trace analysis. It has low molecular weight, low volatility, thermal lability, and good water solubility. These properties cause problems in its extraction, purification, and detection. The determination often requires additional processes that may allow quantification by chromatographic methods. Several analytical procedures have been developed based on solid-phase extraction, ion-exchange chromatography, or matrix solid phase dispersion. Most published methods involve liquid extraction followed by clean-up. This review would like to revise the literature on this issue discussing the relevant chromatographic methods reported in the literature in terms of analytical parameters for analyzing such compound in food chain

    investigation on the behavior of pesticides in atmosphere

    Get PDF
    Although pesticides are widely used in agriculture, they and in particular the relative residues in foodstuffs, water and atmosphere, may cause remarkable sanitary problems due to the harmful effects (carcinogenic and mutagenic effects) on the human health. In fact, their spread in waters and atmosphere can produce undesired effects on various organisms and/or water contamination.This paper shows an analytical approach based on XAD-2 adsorbent and GC analysis for evaluating the pesticide trend in atmosphere: in particular, the pesticides investigated are omethoate, dicrotofos, disulfoton, dimethoate, parathion methyl, formothion, paraoxon ethyl, malaoxon, parathion ethyl, iodofenfos and triazofos. For the analytical methodology a linearity response was obtained (r^2 = 0.9988) in GC-NPD whereas the limits of detection range between 2 and 5 pg/ÎĽL in GC-NPD with a Relative Standard Deviation below 9.5. Finally, this approach has been successfully applied to real samples: the results show that dimethoate concentration decreases with increasing distance from the sampling site but it is still persistent in atmosphere after few days from the pesticide spraying

    PM10 and PM2.5 Qualitative Source Apportionment Using Selective Wind Direction Sampling in a Port-Industrial Area in Civitavecchia, Italy

    Get PDF
    The possibility to discriminate between different emission sources and between natural and anthropogenic contributions is a key issue for planning efficient air pollution reduction and mitigation strategies. Moreover, the knowledge of the particulate matter (PM) chemical composition for the different size fractions is recognized as increasingly important, in particular with respect to health effects of exposed population. This study is focused on the characterization of PM10 and PM2.5 main sources located in the Civitavecchia harbor-industrial area (Central Italy), namely a large coal-fired power plant, a natural gas power plant, the harbor area, the vehicular traffic (due to both the local traffic and the highway crossing the area) and small industrial activities. The approach was based on PM10/PM2.5 samples monthly collected for one year and a further relative chemical characterization of organic and inorganic fractions. Wind-select sensors, allowing a selective PM10 and PM2.5 sampling downwind to specific emission sources, were used for the overall sampling. This methodology manages to explain specific emission patterns and to assess the concentration levels of the micro pollutants emitted by local sources and particularly toxic for health. A descriptive statistical analysis of data was performed, also verifying the occurrence of legislative threshold exceedances. Moreover, in order to highlight the contribution of specific sources, the differences in the measured micro pollutants concentrations between wind directions, PM size fractions and sampling sites have been investigated, as well as the seasonal trends of pollutants concentrations. These results allow to highlight that the applied methodology represents a valid support in source apportionment studies
    • …
    corecore