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Abstract: The possibility to discriminate between different emission sources and between natural
and anthropogenic contributions is a key issue for planning efficient air pollution reduction and
mitigation strategies. Moreover, the knowledge of the particulate matter (PM) chemical composition
for the different size fractions is recognized as increasingly important, in particular with respect
to health effects of exposed population. This study is focused on the characterization of PM10 and
PM2.5 main sources located in the Civitavecchia harbor-industrial area (Central Italy), namely a large
coal-fired power plant, a natural gas power plant, the harbor area, the vehicular traffic (due to both
the local traffic and the highway crossing the area) and small industrial activities. The approach
was based on PM10/PM2.5 samples monthly collected for one year and a further relative chemical
characterization of organic and inorganic fractions. Wind-select sensors, allowing a selective PM10

and PM2.5 sampling downwind to specific emission sources, were used for the overall sampling. This
methodology manages to explain specific emission patterns and to assess the concentration levels of
the micro pollutants emitted by local sources and particularly toxic for health. A descriptive statistical
analysis of data was performed, also verifying the occurrence of legislative threshold exceedances.
Moreover, in order to highlight the contribution of specific sources, the differences in the measured
micro pollutants concentrations between wind directions, PM size fractions and sampling sites have
been investigated, as well as the seasonal trends of pollutants concentrations. These results allow to
highlight that the applied methodology represents a valid support in source apportionment studies.

Keywords: PM10; PM2.5; wind select-sampling device; harbor; chemical composition; PAHs; metals;
PCCD/F; source apportionment

1. Introduction

With the progressive reduction of emissions from large combustion plants, from road traffic,
the emissions from other sources, as non-road mobile sources, are becoming increasingly important,
in particular in port areas where intense commercial activities are present. Many cities in Europe
and even in Italy have great difficulties in compliance with the limits imposed by European Union
legislation on air quality. The presence of harbors/ports in urban areas should be considered as an
important pollution source, often also with the presence of cruise terminals, which are completely
integrated into the cities. Furthermore, the International Maritime Organization (IMO) has estimated
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that more than 90% of world trade is moved by sea as the maritime transport is the cheapest way to
move goods and raw materials [1].

In large harbors, air quality is measured by monitoring the atmospheric concentrations of the
pollutants regulated by Legislative Decree 155/10 [2], such as nitrogen dioxide (NO2), sulfur dioxide
(SO2), carbon monoxide (CO), ozone (O3), benzene (C6H6), PM10 and PM2.5 through mobile and fixed
monitoring stations.

Among the most polluting factors, besides land-based port activities, the main ship emissions are
nitrogen oxides (NOx), sulfur oxides (SOx), CO, particulate matter (PM) and hydrocarbon (HC) due
to the engine combustion [3–6]. Ship emissions account for respectively 2.7%, 15% and 4–9% of the
global anthropogenic CO2, NOx and SO2 emissions [7], whereas PM10 and PM2.5 levels are related to
primary emissions from fuel oil combustion but also to the formation of secondary aerosols [8]. These
pollutants are the main chemicals involved in processes leading to acidification and eutrophication as
well as formation of ground level ozone [9]. The pollution of port cities is mainly due to the stationing
of cruise ships moored to the piers [10]—these floating cities must keep the engines running both to
work and to provide on-board passenger services [11]. By this way, highly toxic fumes are emitted
into the atmosphere compromising the air quality [12], the environment [13] and, consequently, the
public health [14,15]. Based on previous evidences [16–18], it can be hypothesized a specific role of
environmental pollution of industrial origin on the current frequency of lung cancer in Civitavecchia.
Infant respiratory disease is strongly influenced by environmental exposures. Recent studies conducted
in Europe and the United States have highlighted a role of air pollution in the aggravation of bronchial
asthma, a pathology particularly frequent in pediatric age [19–21] As a consequence, in complex
areas where multiple sources are located, the study of contribution to PM emission from different
sources is an important task in air quality management. These studies are performed using the source
apportionment methodologies [22–25]. The possibility to discriminate among different emission
sources and between natural and anthropogenic contribution is a key issue for planning efficient air
pollution reduction and mitigation strategies, as pointed out by different authors [26–28]. Moreover, the
knowledge of the chemical composition [29,30] for the different PM size is recognized as increasingly
important, in particular with respect to the health effects of the exposed population [31]. All the
considerations will be based on data obtained from wind-oriented samplings. This particular strategy,
still considered rare, was introduced by Alleman et al. [32]. Each sampler, coupled with a wind sensor
allowing the turning on and off of the instrument depending on wind direction and speed, alternately
collects PM coming from the wind directions—in this way, each airborne sample, related to different
wind conditions, is not predominantly associated with a direction but is exclusively connected with a
single direction [33–35]. Figure 1 shows the sampler used in this study.
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The aim of this study is the identification of main emitting sources of PM10 and PM2.5 in the
Civitavecchia port-industrial area (Central Italy), namely a large coal-fired power plant, a natural
gas power plant, the harbor activities, the vehicular traffic (due to urban traffic and to the highway
crossing the area) and small industrial companies located in the town. Our study also provides
precious information on the chemical composition of the PM10 and PM2.5 collected, effective to explain
specific sources emission patterns as well as to assess the concentration levels of micro pollutants
(MPs), particularly toxic for human health.

2. Experiments

Characterizazion of the Sampling Site

The investigated area (Figure 2) is affected by the presence of different anthropogenic sources.
Civitavecchia is a city of about 53,000 inhabitants, hosting a commercial port which moves about
4 million people and 11 million tons of goods per year. In recent years, it has become a leading port for
cruise ships in the Mediterranean Sea. Furthermore, Civitavecchia is the third Italian energy hub, with
a coal-fired power plant (Torrevaldaliga North) of 1980 MW and gas turbine plant (Torrevaldaliga
South) of a 1200 MW. This area is crossed by an important highway (Rome-Tarquinia) and the Aurelia
state road is affected by freight traffic.

With the aim to study the sources contribution to PM environmental concentrations, the
chosen sampling method is represented by a PM sampler coupled with a wind-select sensor that
allows collecting PM on different cartridges according to specific wind directions (WindSelect+,
MonitoringSystems GmbH, Austria). In fact, this device allows to set two user-defined wind direction
sectors, corresponding to specific emission sources (i.e., coal-fired power plant, sector #1 and harbor,
sector #2). By this way, the wind sensor activates the different cartridge and acquires the air volumes
when the wind comes from these wind sectors; a third sector (sector #3) is activated when the wind
blows from all other directions.
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building at about 25 m above the ground level, the second one was located just outside the urban
area, in an Urban Background (UB) site, at 3 m above the ground level. The U and UB sites, both
equipped with a PM10 and PM2.5 wind-select sampling device, are 12 km apart. The samplers have
been configured to collect airflows downwind the coal-fired power plant (sector #1) and downwind
the port area (sector #2), whereas all other wind directions correspond to sector #3. For the U site
the sectors were—sector #1: 300◦–330◦, downwind the coal-fired power plant direction; sector #2:
200◦–280◦, downwind harbor; sector #3: all other directions. For the UB site the three sectors were:
sector #1: 270◦–300◦, downwind coal-fired power plant direction; sector #2: 210◦–260◦, downwind
harbor; sector #3: all other directions.

The study was carried out from July 2015 to June 2016. PM10 and PM2.5 samplings were performed
by means of wind-selective samplers; the duration of each sampling was approximately 30 days. On
the PM10 and PM2.5 samples monthly collected, chemical analyses were performed for determining the
concentrations of organic and inorganic species in both aerosol size filters, focusing on those related to
coal combustion, as heavy metals (i.e., As, Cd, Mn, Ni, Pb, Se, V, etc.), Polycyclic Aromatic Hydrocarbons
(PAHs), Polychlorinated Biphenyl (PCBs), Polychlorodibenzodioxins and Polychlorodibenzofurans
(PCDD/Fs) [36–41]. For the depositions, the measurements were carried out with bulk samplers
according to UNI EN 15841:2010 and UNI EN 15980:2011 standards. The detection system consists
of glass fiber filters and adsorbent cartridges (Polyurethane Foam, PUF, and Amberlite XAD-2). For
the organic compounds the samples were extracted by Accelerated Solvent Extraction (ASE) and
the analyses were carried out by HRGC-HRMS (High Resolution Mass Spectrometry; R > 10,000),
according to the indications of UNI EN 1948:2006 parts 2 and 3, for the determination of PCCD/Fs and
PCBs and according to the indications of ISO 122,844 and UNI EN 15549:2008 (specifically for benzo
(a)pyrene) for determining PAHs whereas the determination of the inorganic fraction, that is, metals,
was performed by IPC-MS, according to UNI EN 14907:2005, after that the samples were mineralized in
HNO3 according to the UNI EN 14902:2005. Finally, a particular attention was devoted to investigating
the Limit of Detections (LODs) of each compound; they can be resumed as follows—metals 0.1 ng;
PAHs 10 ng; PCDD/Fs 100 fg; PCB 1000 fg.

3. Results and Discussion

An analysis on the meteorological conditions of the area and on operating characteristics of the
coal-fired power plant was initially performed.

3.1. Meteorological Conditions

The analysis of the meteorological conditions was carried out on data acquired from the
meteo-station located inside the coal-fired power plant settlement at high altitude (120 m).

The available data cover the period between June 2015 to March 2016. The analysis of wind
directions showed the expected seasonal variability during all the study period. In general, the
winds from East have low frequencies, in some periods they are absent. The most frequent directions
are those associated with the sector from South-West to North-West, the winds from the South are
predominant in the months of October and February, whereas the North-East sector is present with
higher frequencies in the months of September, October, November and March.

Figure 3 shows how the wind directions change during the daily hours, as measured in the period
June 2015-March 2016. Until mid-morning hours the North-East and South-East directions are prevalent,
therefore the wind turns and during the afternoon West and North-West sectors are the predominant
wind directions, in particular the North North-West sector during the evening (hours 16–19). Even
the wind speeds show a variability strictly related to wind direction. On average, higher speeds are
associated with winds from the North-East and South-East directions. A frequency analysis of the daily
hours in which the wind sectors are active was also performed. Sector #1 of the U site is downwind more
frequently during the evening hours, the other sectors, that is, sector # 2 of U site and sectors # 1 and # 2
of UB site, are downwind more frequently during the mid-day hours and early afternoon.
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Figure 3. Frequency distribution of wind directions according to the daily hours.

3.2. Coal-Fired Power Plant Information

The analysis of operation characteristics of the coal power plant was performed, taking into
account data from the Continuous Monitoring System installed on the three stacks (Table 1). Total
Suspended Matter (TSM) emission data (in mg Nm−3) from the period June 2015 to March 2016
were analyzed.

Table 1. Main Plant Operation during the Entire Sampling Campaign (June 2015–March 2016).

Time
Group 2 Group 3 Group 4

Capacity a Flow
Rate b TSM c Capacity a Flow

Rate b TSM c Capacity
a

Flow
Rate b TSM c

June 550(43) 1,572,272 2.2 596(79) 2,075,928 1.8 601(99) 1,909,308 1.5
July 591(100) 1,664,146 1.9 575(95) 2,019,210 1.8 528(100) 1,745,957 1.7

August 576(99) 1,615,357 2.6 527(100) 1,905,924 2.1 438(100) 1,527,666 1.9
September 594(90) 1,757,349 2.3 577(99) 2,066,819 1.4 521(87) 1,768,322 1.8

October 551(51) 1,665,602 2.2 573(61) 2,048,259 1.2 547(100) 1,891,623 1.5
November 605(98) 1,839,608 2.2 582(80) 2,047,368 1.2 562(99) 1,929,248 1.8
December 616(95) 1,958,688 2.1 582(65) 1,487,230 1.3 595(100) 2,023,051 1.8

January 590(100) 1,981,041 2.2 504(93) 2,049,992 1.6 581(90) 1,969,306 1.7
February 500(97) 1,645,718 2.8 547(100) 1,859,879 1.6 533(64) 1,812,716 2.5

Mar 535(88) 1,772,537 2.7 543(99) 1,825,371 1.7 445(29) 1,478,600 4.4
a expressed as MW (% of operation); b expressed as Normal m3 h−1; c expressed as mg Nm−3.

3.3. Chemical Analysis and Relative Source Apportionment

As said before, the study was addressed for identifying the sources (source apportionment) of organic
and inorganic contaminants in similar complex areas, using the wind-select monitoring devices. This
approach allows to highlight the relationships between the presence/abundances of specific chemicals and
the wind/sampling directions. Further, before starting with the results, it should be underlined that the
domestic heating, another well-known source potentially affecting the urban air quality, in Civitavecchia
is characterized by methane gas—in this case the authors considered its contribution to be superfluous,
also considering the average temperatures ranging between 13.5–21.1 ◦C during winter/autumn period
and 17.3–25.9 ◦C during spring/summer period, with a yearly average of 19.5 ◦C, 66 rainy days and
Relative Humidity (RH) 74.7% (source—Stazione Meteorologica di Civitavecchia).

At the same time, concentrations data of PM10 at the suburban site and PM2.5 in the two sites,
urban and suburban locations, were acquired for all the period. These data were measured by
gravimetric method with instrument located close to the wind-select samplers. Figure 4 shows the
gravimetric measurements performed in urban and suburban area—particularly, Figure 4a shows the
PM10 behavior for the entire period whereas Figure 4b PM2.5 in both locations.
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Figure 4. Gravimetric measurements in the two sites—PM10 in suburban area (a) and PM2.5 in the two
sites (b).

In the urban area, due to maintenance works, data of PM2.5 are missing between December
and January, (in Figure 4b there is a “hole” in that period). The concentrations are similar on both
sites—at the suburban site, an average value of 12.6 µg m−3 is recorded whereas at urban site a mean
value of 9.7 µg m−3. This is most likely due to the missing measurement period (December–January)
at this location—in fact, wintertime shows unfavorable meteorological conditions for the pollution
dispersion [42,43], allowing high levels of pollutants. PM10 measurements at the suburban site show a
mean value of 19 µg m−3 for the entire period—the measurements confirm the high pollution level
recorded during January and December period as provided by the Figure 4a.
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The results of chemical analysis performed on PM2.5 and PM10 are represented in Tables 2 and 3
for the mean levels of inorganic (i.e., metals) and organic (PCDD/Fs, PAHs and PCB and DL-PCB)
substances in cartridges sampled for each sector. Data in Tables 2 and 3 concern the whole period mean
concentration of each pollutants both in urban and suburban site. In Tables S1–S8 of the Supplementary
Material report all the analytical determinations performed sector-by-sector during the whole sampling
periods in both locations are reported.

Table 2. Levels of Metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated dibenzodioxins
and Polychlorinated dibenzofurans (PCDD/Fs) and Polychlorinated biphenyls (PCBs) determined in
downtown (site U).

Compound PM10 PM2.5

Sector #1 Sector #2 Sector #3 Sector #1 Sector #2 Sector #3

Metals (ng m−3)
As 1.73 0.310 0.076 1.27 0.210 0.114
Ba 6735 1852 293 38.7 3.13 0.628
Be 0.144 0.035 0.006 0.040 0.006 0.001
Cd 3.12 0.763 0.076 0.615 0.051 0.034
Co 0.549 0.066 0.022 0.666 0.172 0.030
Cr 79.3 10.2 1.64 218 31.9 3.46
Cu 22.1 3.11 1.70 21.8 3.36 1.39
Mn 20.2 1.65 0.725 27.7 1.53 0.445
Ni 22.0 2.40 0.764 32.7 6.36 1.94
Pb 35.3 5.77 0.724 8.19 2.31 1.34
Sb 5.75 0.311 0.091 2.95 2.94 0.437
Se 2.42 0.311 0.055 0.588 0.206 0.155
Sn 8.81 0.856 0.438 8.90 1.58 0.594
Sr 17.3 5.54 1.46 18.1 0.83 0.302
Te 0.031 0.001 0.001 0.017 0.013 0.000
Ti 16.9 2.18 0.6223 26.06 1.455 0.360
Tl 0.299 0.006 0.003 0.030 0.115 0.004
V 15.1 0.918 0.154 6.76 5.46 1.56

Zn 8138 2770 387 70.9 15.6 6.64
Total Metals (ng m−3) 15,124 4656 688 484 77.2 19.4

PAHs (ng m−3)
Acenaphthene 4.97 0.631 0.043 26.5 3.42 2.14

Acenaphthylene 2.24 0.563 0.024 8.78 1.74 0.115
Anthracene 9.01 9.94 0.309 6.86 8.65 8.97

Benz[a]Anthracene 1.37 0.571 0.070 0.988 2.18 0.255
Benzo(a)pyrene 1.13 0.031 0.006 0.153 0.108 0.078

Benzo[b]Fluoranthene 1.22 0.031 0.049 0.153 0.031 0.151
Benzo[g,h,i]Perylene 1.50 0.031 0.066 0.274 1.08 0.127
Benzo[j]Fluoranthene 0.329 0.031 0.006 0.153 0.031 0.166
Benzo[k]Fluoranthene 0.424 0.031 0.004 0.153 0.031 0.311

Chrysene 1.62 0.464 0.077 0.863 1.31 0.253
Dibenzo[a,e]Pyrene 0.153 0.031 0.004 0.249 0.031 0.004

Dibenzo[a,h]Anthracene 5.11 0.031 0.004 0.280 0.031 0.065
Dibenzo[a,h]Pyrene 0.153 0.031 0.004 0.153 0.031 0.004
Dibenzo[a,i]Pyrene 0.153 0.031 0.004 0.153 0.031 0.004
Dibenzo[a,l]Pyrene 0.153 0.041 0.004 0.153 0.031 0.004

Phenanthrene 22.0 22.3 0.165 91.2 3.85 4.76
Fluoranthene 1.48 0.040 0.325 29.7 5.48 1.1198

Fluorene 11.7 1.95 0.245 54.0 9.95 1.40
Indeno [1,2,3-cd]Pyrene 1.50 0.031 0.051 0.291 0.964 0.123

Naphthalene 374 44.4 0.723 2189 373 45.6
Pyrene 3.43 1.07 0.087 19.0 9.22 2.30

Total PAHs 64.7 36.8 1.41 221 38.0 19.9

PCCD/Fs (fg m−3)
2,3,7,8-TCDD 1.53 0.314 0.038 1.53 0.314 0.233
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Table 2. Cont.

Compound PM10 PM2.5

Sector #1 Sector #2 Sector #3 Sector #1 Sector #2 Sector #3

1,2,3,7,8-PCDD 3.99 1.51 0.038 1.53 0.604 1.25
1,2,3,4,7,8-HxCDD 1.53 0.314 0.100 1.53 0.314 0.336
1,2,3,6,7,8-HxCDD 13.6 0.314 0.250 1.53 0.611 0.729
1,2,3,7,8,9-HxCDD 12.6 0.314 0.143 1.53 0.544 0.793

1,2,3,4,6,7,8-HpCDD 92.7 0.886 1.14 38.1 9.47 11.4
OCDD 601 29.0 3.64 878 694 53.7

2,3,7,8-TCDF 27.4 1.93 0.149 24.15 5.84 8.90
1,2,3,7,8-PCDF 1.53 0.314 0.344 3.11 1.86 1.39
2,3,4,7,8-PCDF 32.4 0.558 0.345 1.53 6.14 4.58

1,2,3,4,7,8-HxCDF 27.0 0.487 0.633 3.59 2.94 4.42
1,2,3,6,7,8-HxCDF 30.7 0.314 0.636 5.30 1.16 2.76
2,3,4,6,7,8-HxCDF 16.9 1.534 0.852 4.47 1.84 6.58
1,2,3,7,8,9-HxCDF 4.63 0.314 0.221 1.53 0.397 0.244

1,2,3,4,6,7,8-HpCDF 79.2 4.08 2.39 26.3 6.66 15.1
1,2,3,4,7,8,9-HpCDF 10.7 0.919 0.229 1.53 1.03 1.35

OCDF 264 5.13 3.32 107 18.7 12.5
Total PCCD/Fs 1221 48.2 14.5 1102 752 126

PCBs (fg m−3)
77-CB 84.5 11.2 1.09 3945 439 179
81-CB 15.3 3.94 0.920 148 49.2 20.3

105-CB 804 58.7 27.3 4580 2099 873
114-CB 28.6 7.44 0.700 323 202 112
118-CB 10,402 1175 303 40,712 7404 2843
123-CB 128 33.2 10.8 4041 208 201
126-CB 15.3 9.36 0.807 29.5 12.4 4.31
156-CB 2694 382 68.5 10174 886 153
157-CB 76.4 20.6 1.88 122 25.7 5.07
167-CB 1043 93.5 33.9 896 532 44.7
169-CB 15.3 9.09 0.377 15.3 3.14 4.67
189-CB 535 25.1 6.26 277 79.8 23.6

Total PCBs 15,841 1829 456 65,263 11,940 4464

Table 3. Levels of Metals, PAHs, PCDD/Fs and PCBs determined at suburban area (Site UB).

Compound PM10 PM2.5
Sector #1 Sector #2 Sector #3 Sector #1 Sector #2 Sector #3

Metals (ng m−3)
As 0.614 2.35 0.074 0.190 0.218 0.070
Ba 2379 6425 132 2.61 7.04 0.713
Be 0.046 0.137 0.004 0.003 0.012 0.001
Cd 0.146 0.317 0.013 0.035 0.057 0.034
Co 0.067 0.216 0.017 0.092 0.172 0.022
Cr 3.18 12.4 0.351 26.0 98.7 2.25
Cu 1.92 8.24 0.594 2.90 3.37 1.16
Mn 0.797 2.38 0.493 1.91 5.40 0.175
Ni 3.22 4.97 0.294 3.33 6.75 0.734
Pb 1.56 4.68 0.243 1.31 1.93 1.22
Sb 0.122 2.95 0.047 0.270 0.667 0.96
Se 0.253 1.02 0.047 0.145 0.143 0.086
Sn 1.80 16.1 0.409 3.04 4.73 1.27
Sr 2.88 24.8 1.19 1.47 3.09 0.100
Te 0.010 0.007 0.001 0.003 0.007 0.000
Ti 0.763 3.40 0.340 1.01 3.09 0.215
Tl 0.020 0.017 0.000 0.010 0.010 0.013
V 0.327 0.843 0.096 1.95 1.34 0.792
Zn 2873 9581 283 8.96 19.3 2.90
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Table 3. Cont.

Compound PM10 PM2.5
Sector #1 Sector #2 Sector #3 Sector #1 Sector #2 Sector #3

Total Metals 5270 16,091 420 55.2 156 12.7

PAHs (ng m−3)
Acenaphthene 0.598 2.04 0.017 1.23 7.27 1.23
Acenaphthylene 0.063 0.918 0.006 0.333 5.34 0.056
Anthracene 1.23 2.46 0.061 1.15 6.82 0.301
Benz[a]Anthracene 0.242 720 0.004 1.76 0.958 0.115
Benzo(a)pyrene 0.017 0.142 0.003 0.132 1.51 0.031
Benzo[b]Fluoranthene 0.017 16.1 0.005 0.412 0.728 0.152
Benzo[g,h,i]Perylene 0.017 0.107 0.003 0.512 1.08 0.104
Benzo[j]Fluoranthene 0.017 0.124 0.002 0.038 0.182 0.089
Benzo[k]Fluoranthene 0.017 0.068 0.004 0.025 0.189 0.065
Chrysene 0.188 0.124 0.005 1.19 3.38 0.327
Dibenzo[a,e]Pyrene 0.017 0.068 0.002 0.017 0.094 0.044
Dibenzo[a,h]Anthracene 0.017 0.068 0.002 0.017 0.068 0.029
Dibenzo[a,h]Pyrene 0.017 0.068 0.002 0.017 0.068 0.002
Dibenzo[a,i]Pyrene 0.017 0.068 0.002 0.017 0.068 0.002
Dibenzo[a,l]Pyrene 0.017 0.068 0.002 0.017 0.068 0.047
Phenanthrene 0.727 0.958 0.038 12.3 22.6 10.4
Fluoranthene 1.02 2.22 0.057 5.83 13.9 5.05
Fluorene 1.15 8.70 0.073 1.94 9.35 2.86
Indeno[1,2,3-cd]Pyrene 0.017 0.104 0.004 0.340 0.739 0.066
Naphthalene 1.43 4.81 0.119 188 910 23.4
Pyrene 0.783 1.78 0.043 3.15 7.24 3.54
Total PAHs 5.39 754 0.288 27.0 73.7 20.9

PCCD/Fs (fg m−3)
2,3,7,8-TCDD 0.167 2.56 0.022 0.304 0.925 0.114
1,2,3,7,8-PCDD 1.07 5.34 0.067 0.167 80.7 1.38
1,2,3,4,7,8-HxCDD 0.381 6.07 0.037 0.656 0.685 1.23
1,2,3,6,7,8-HxCDD 0.435 12.2 0.081 0.975 1.47 4.65
1,2,3,7,8,9-HxCDD 0.395 11.1 0.095 0.353 0.685 4.56
1,2,3,4,6,7,8-HpCDD 2.45 94.7 1.70 6.85 15.2 38.8
OCDD 14.3 261 4.16 19.8 106 79.4
2,3,7,8-TCDF 2.01 18.3 1.23 5.95 7.29 8.85
1,2,3,7,8-PCDF 0.851 8.74 0.071 0.937 2.45 4.94
2,3,4,7,8-PCDF 1.34 26.4 0.479 2.43 10.1 10.6
1,2,3,4,7,8-HxCDF 1.07 37.6 0.330 2.40 5.69 14.6
1,2,3,6,7,8-HxCDF 0.696 30.3 0.321 1.51 4.66 10.9
2,3,4,6,7,8-HxCDF 0.943 54.8 0.783 1.84 3.50 17.9
1,2,3,7,8,9-HxCDF 0.505 7.30 0.056 0.296 1.18 4.38
1,2,3,4,6,7,8-HpCDF 4.32 237 2.22 11.6 14.8 79.0
1,2,3,4,7,8,9-HpCDF 1.19 9.13 0.103 0.610 2.11 9.51
OCDF 8.12 175 3.13 9.91 17.2 101
Total PCCD/Fs 40.3 997 14.9 66.6 275 392

PCBs (fg m−3)
77-CB 19.2 28.8 0.580 1033 3752 166
81-CB 3.92 6.85 0.217 92.9 85.3 7.29
105-CB 101 555 26.0 1729 6340 249
114-CB 1.46 7.58 0.535 92.3 580 11.8
118-CB 1421 4444 191 7023 26,709 1192
123-CB 12.5 28.8 1.10 164 1826 22.0
126-CB 1.67 6.85 0.217 14.9 6.85 2.01
156-CB 666 1750 68.3 453 2606 104
157-CB 19.8 34.2 2.10 8.36 34.2 1.10
167-CB 276 630 22.7 287 1103 62.4
169-CB 1.67 6.85 0.217 1.67 6.85 1.48
189-CB 53.4 184 2.21 13.7 84.9 7.04
Total PCBs 2578 7683 315 10,912 43,134 1826
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3.3.1. Inorganic Fraction

The study of inorganic substances has been addressed for elements potentially representative of
anthropic sources with high interest for public health. With this aim, in addition to the metals routinely
monitored in compliance with the air quality law (Legislative Decree 155/2010), that is, As, Cd, Ni and
Pb, the chemical analysis also concerned Sb, Ba, Be Co, Cr, Mn, Cu, Se, Sr, Tl, Te, Ti, V and Zn. These
elements are generally present with different abundances and in different oxidation states in the PM
size fractions.

The analytical determinations of metals for each monitoring site and both PM fractions and sectors,
are showed in Tables S1 and S2 of the Supplemental Material for the U and UB sites, respectively.
Figure 5a,c for U site and Figure 5b,d for UB site, respectively, report all the concentrations measured
during the entire sampling period.
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Figure 5. Metals and metalloids in PM10 and PM2.5 in the (a,c) Urban Site and (b,d) Urban Background,
respectively—both the PM fractions highlight the presence of many anthropogenic elements; it is also
worth noting the predominance of Crtot, in the PM2.5 fraction in both sampling sites, which can be
associated to coal combustion (red: sector #1; green: sector #2; blue: sector #3).

For a comparison of concentration values measured regulated metals (As, Cd, Ni and Pb) with
limit established by regulation, it must be taken into account the different sampling methods used with
those defined by law. For the regulated metals, it is possible a comparison only for determinations on
the PM10 fraction, even though the integration time of PM10 in this study is on monthly average and
not daily as required.
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Taking into account this caution, the following values deserve to be mentioned:

3 For the U site, sector #1, Cd 18.6 ng m−3 in autumn, As 6.67 ng m−3 and Ni 62.3 ng m−3 in spring
period and 58.7 ng m−3 in summertime;

3 For the UB site, sector #2, As 9.86 ng m−3 in autumn and Ni 35.0 ng m−3 in summertime.

For other metals, in both stations, there is a higher percentage presence of Ba, Cr and Zn compared
to the other metals. Further, in both stations, Cr shows peak concentrations mainly in the PM2.5 fraction,
whereas Ba and Zn have the highest concentrations in the PM10 fraction. The different distribution of
heavy metals in the two fractions, sometimes higher concentrations in the fine fraction than in PM10, is
strange but not surprisingly. Such occurrence was found in other studies, also by some co-authors in
samples collected downtown [44] or in industrial area [45].

The wind-selective analysis aims to highlight the pollutant origin, as the study main objective.
On this regard, the inorganic fraction in PM10 and PM2.5 shows the following:

� For U station the highest metal concentration values are recorded in sector #1, downwind the
coal-fired power plant, both in the PM10 and in the PM2.5 fraction;

� For the UB station the highest levels are, on average, recorded at sector #2, downwind the port
area, both in the PM10 fraction and in the PM2.5 fraction.

Except for As, Ba, Se, Te and Zn, the higher concentration values for each element are observed at
the U station. Some exceptions for specific chemicals are noted, mainly in the sector #2—Cr and Co in
the PM2.5 fraction in winter and Ba, Sr and Zn in the PM10 fraction in summer. For the UB location, Zn
in the PM10 fraction in the summer period when sector #3 is prevailing, Cu in the PM2.5 fraction in the
autumn period during sector #1 prevailing and Ni in the PM10 fraction in the autumn period with high
frequency of sector #1.

3.3.2. Organic Fraction

For organic pollutants, the concentration profiles of PAHs, PCCD/Fs and PCBs in the PM10 and
PM2.5 fractions were studied.

In general the urban location measures higher PAH concentrations than the suburban one, even
though the concentrations always remain below values compatible with the monitored urban territorial
context, and, the benzo (a)pyrene (B (a)P) concentrations, that is, the only PAH regulated by Legislative
Decree 155/2010 [1], in PM10 are always lower than 1.0 ng m−3 which is the limit for the annual average.
Just one measure (Tables S3 and S4 of the Supplementary Material), performed in U site records a
concentration of B(a)P greater than 1.0 ng m−3.

Comparing the PAHs concentrations measured in the different sectors (Figure 6), sector #1 of the
U location averagely records higher values than those observed in sectors #2 and #3, whereas in the UB
area sector #2 records higher concentrations than those in sectors #1 and #3. Sectors #3 of both stations
record the lowest PAHs concentrations.

Comparing the measures performed, it is noted that each PAH is concentrated in the PM2.5 fraction
in all samplings carried out during the entire research study, except for measures performed at U area
sector #1 during springtime, when some PAHs are below the LODs in PM2.5 fraction whereas they are
observed in PM10 samples. For the UB location the measures always show higher concentrations in
PM2.5; only once they are higher in PM10 for benzo(a)anthracene, B(a)P and benzo (b)fluoranthene,
during the winter period.

The PAHs profile, representing the percentage of the concentration of each PAHs measured with
respect the whole PAH concentration, can suggest some information on pollutants origin. Figure 7
shows the profiles of the mean PAHs levels for both the urban site during the winter period for each
sector and particle size. Each profile is represented starting from the top to the bottom with the
lightest PAH (2 benzene rings) to the heaviest (5–6 benzene rings). In U and UB site and in all sectors,
naphthalene shows the highest concentration among the PAHs pollutants.
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Figure 6. PAHs concentrations—sector #1 (air coming from the power plant) is the prevailing sector
in U site, sector #2 (air coming from port area) in the UB site (red: sector #1; green: sector #2; blue:
sector #3).
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Figure 7. PAHs profiles for U site—naphthalene and phenanthrene, markers of ship emissions,
show greater concentration in every sampling period and sector (in figure the spring sampling),
indicating a significant contribution of port area to the overall emissions (N: Naphthalene;
ACY: Acenaphtylene; ACE: Acenaphtene; F: Fluorene; P: Phenanthrene; ANT: Anthracene; Fl:
Fluoranthene; Pyr: Pyrene; BaAnt: Benzo[a]anthracene; Chr: Chrysene; BbFl: Benzo[l]fluorathene;
BkFl: Benzo[k]fluorathene, BjFl: Benzo[j]fluorathene; DBAnt: Dibenzoanthracene; DBaePyr:
Dibenzo[a,e]pyrene; DBahPyr: Dibenzo[a,h]pyrene; DBaiPyr: Dibenzo[a,i]pyrene; DBalPyr:
Dibenzo[a,l]pyrene; BghiPer: Benzo[g,h,i]perylene; Ipyr: Indeno[1,2,3-cd]perylene).

In general, all the measurements show the greatest contribution of the light PAHs (2–3 rings),
present not more than 2% in the various samples, compared to the heavier ones. Besides to
naphthalene, PAHs are phenanthrene, fluoranthene, anthracene, acenaphthene, chrysene and pyrene
are the more abundant pollutants. Among the heavier PAHs, benzo[g,h,i]perylene and indeno[1,2,3-
cd]pyrene show concentrations above the LODs. Generally, these two pollutants are related to
diesel vehicular emissions [46–52] whereas the petrol vehicle emissions are characterized by B[a]P
and dibenzo[ah]anthracene emissions [53–57]. For coal combustion, the PAHs profiles are generally
characterized by a high presence of fluoranthene, pyrene, phenanthrene and anthracene, to which the
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chrysene and the isomer of benzo[k]fluorantene are added [58–61]. Regarding marine emissions, for
ships at the port both in mooring and maneuvering, the PAHs fingerprint is represented by naphthalene,
phenanthrene, pyrene, fluorene, followed by acenaphthylene and acenaphthalene [62–65].

The PAHs profiles observed in the two locations and for all the sectors show a predominant
pyrogenic contribution, due to mixed contributions from the coal-fired power plant and from the port
area. The high percentage of naphthalene, whose concentrations always remain comparable with
those that normally occur in urban environments [66,67], would suggest a significant contribution
from the emissions from the port area. Furthermore, the contribution of diffuse emissions arising from
the port and the power plant, determines a PAH background contamination, especially for the lighter
compounds (i.e., from naphthalene to chrysene). On this picture, under some circumstances, heavy
vehicle diesel traffic adds its own contribution.

Like PAHs, the PCDD/Fs determinations (expressed as toxic equivalent, WHO-TE2005) in the two
locations (Figure 8) show that sector #1 in U site records higher concentrations than those observed
from the other two sectors, whereas for the UB location sector #2 records the highest concentrations
compared to the other two.
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Figure 8. Polychlorinated dibenzodioxin and Polychlorinated dibenzofuran (PCDD/F) and
Polychlorinated biphenyl (PCB) concentrations in (a) urban site and (b) suburban site—sector #3
shows during same monitoring period values greater or comparable with the other sectors suggesting
a widespread contamination likely due to the presence of multiple emissive sources near the sampling
site (red: sector #1; green: sector #2; blue: sector #3).

Differently from PAHs, the lowest concentrations of PCDD/F not always are related to sector #3.
In U site the sector #3 concentrations are similar and, on two cases, higher than those recorded by sector
#2. This behavior is also evident in the UB location, where the sector #3 concentrations, particularly
in PM2.5 fraction, reach high concentrations compared to those measured in the other sectors. The
Figure 8 shows that the UB station sector #2 records in the winter and spring high concentrations,
an order of magnitude higher than all the others. Similarly, to the PAHs, the PCDD/F concentrations
(in equivalent toxicity WHO-TE) are generally higher in PM2.5 with respect to PM10, with the exceptions
of spring-sector #1 U site and at spring-sector #2 of UB site. For the PCBs-DL (dioxin like) (Tables S7
and S8 of the Supplementary Material) comparable behaviors are highlighted in the two stations. In U
site the higher concentrations are observed corresponding to sector #1, for the U site and to sector #2
for the UB area. In addition, pollutants concentrations are higher in the PM2.5 fraction compared to
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PM10. For PCBs-DL, the lowest concentrations are measured in relation to sector #3 for both stations,
similarly to the PAHs behavior and differently from PCDD/Fs.

The Tables S5 and S6 of the Supplementary Material, respectively for U and UB sites, show the
profiles of PCDD and PCDF congeners, for each sector, in PM10 and PM2.5 fractions. A first analysis
shows that the congener concentrations are not always higher in PM2.5 than PM10. In fact, measures
performed in autumn and spring for sector #1 in U site, show higher concentrations for some congeners
in the PM10 fraction as well as at UB area for the sector #1 in winter. Also, in spring the three sectors in
the UB site show higher concentrations for almost all congeners in the PM10 than in PM2.5.

Furthermore, all measures performed during the study and the profiles of the DL-PCBs are
reported in the Supplementary Material. The results show that the congeners 118-PCB; 105-PCB and
156-PCB give the highest contribution in all sectors, fractions and locations.

The PCDD/Fs profiles for the spring sampling period in UB site are represented in Figure 9.
These are always predominated by the presence of OCDD and OCDF. The profiles of sector #1 for the
PM2.5 fraction, show a similar behavior during the different samplings periods with predominance of
OCDD and OCDF, whose summed contribution varies between 60% and 93%, while the secondary
contributions are of TCDF, HxCDF and HpCDF.
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Figure 9. PCDD/F profiles in the UB site during spring sampling—the predominance of
Octachlorodibenzodioxin (OCDD) and Octachlorodibenzofuran (OCDF) congeners is consistent with
those reported by scientific literature in emissions from coal-fired power plant.

From the scientific literature [68–72] a similar profile is highlighted for PCDD/F emitted by large
coal combustion plants. The PM10 and PM2.5 profiles at U sector #1 are similar.5 only in the autumn
period, whereas they are different in the other two periods. The profiles of sector #2 of PM2.5 show
greater variability, between periods and between congeners contributions. The PM10 profiles at sector
#2 differ from those of PM2.5 and show differences among periods in terms of detected congeners and
their relative contribution. The PCDD/Fs profile sampled at sector #3 in PM2.5 shows a wide variability
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of detected congeners in the different samples, according to the large sampling sector that cannot be
associated with any specific source.

3.4. Chemometric Analysis

A statistical analysis has been carried out for overall the data. Preliminarily, a correlation among
all the compounds has been investigated. In the U site the correlations between the PM fractions for
the different sectors show a rather interesting trend. During autumn, high correlation coefficients
(r) are observed between PM10 and PM2.5 for sectors #1 and #3 (0.952, 0.950) whereas it is lower at
sector #2 (0.662). For the other periods, the PM10 and PM2.5 correlation coefficients are—in winter
0.878 sect #1, 0.975 sect #2, 0.882 sect #3; in summer 0.878 sect #1, 0.965 sect #2, 0.971 sect #3. The lower
correlation coefficient in the autumn period between PM10 and PM2.5 in sector # 2 is probably due to a
different weather condition, characterized by rapid changes of wind direction and speed, as expected
in this season period. Different considerations can be drawn for the UB area—in the same period the
correlation coefficient between PM10 and PM2.5 is good, 0.847 and in the other periods r in the three
sectors is better (>0.810 during autumn, >0.924 during winter, >0.912 during summertime). Very good
correlation coefficients (r > 0.970) are observed comparing similar fractions in same sectors, for example,
r between PM10 in sector #1 urban area and PM10 sector #1 in suburban area is 0.977. It should be
underlined that the sectors were chosen in order to show the same sources in that direction (i.e., sector
#1 downwind coal-fired power plant; sector #2 downwind the port area; sector #3 other directions).

Further, the authors approached to study the correlation coefficients (r) among the different
inorganic and organic compounds investigated. Table 4 shows the r determined during the entire
campaign.

Table 4. Correlation Coefficients (r) between PM10 and PM2.5 Fractions among the Compounds
Investigated in the Different Sectors (#1, #2 and #3) during the Entire Study.

Urban (U) Urban Background (UB)

Inorganic
Fraction

PM10 vs. PM2.5 PM10 vs. PM2.5
#1 #2 #3 #1 #2 #3

Metals 0.223 0.296 0.652 0.187 0.096 0.616
PM10 PM2.5

#1 vs. #2 #1 vs. #3 #2 vs. #3 #1 vs. #2 #1 vs. #3 #2 vs. #3
Metals 0.994 0.999 0.998 0.994 0.964 0.987
Metals 0.963 0.616 0.754 0.985 0.716 0.605

Organic
Fraction

PM10 vs. PM2.5 PM10 vs. PM2.5
#1 #2 #3 #1 #2 #3

PAHs 0.999 0.880 0.881 0.533 −0.049 0.813
PCCD/Fs 0.951 0.984 0.820 0.941 0.523 0.928

PCBs 0.986 0.945 0.949 0.878 0.927 0.945
All Data 0.987 0.952 0.956 0.896 0.925 0.948

PM10 PM2.5
#1 vs. #2 #1 vs. #3 #2 vs. #3 #1 vs. #2 #1 vs. #3 #2 vs. #3

PAHs 0.901 0.834 0.837 −0.050 0.953 −0.120
PCCD/Fs 0.958 0.869 0.755 0.875 0.946 0.936

PCBs 0.996 0.993 0.993 0.995 0.999 0.999
All Data 0.996 0.997 0.993 0.982 0.991 0.987

PM2.5 PM2.5
#1 vs. #2 #1 vs. #3 #2 vs. #3 #1 vs. #2 #1 vs. #3 #2 vs. #3

PAHs 0.999 0.980 0.981 0.999 0.917 0.900
PCCD/Fs 0.985 0.955 0.975 0.614 0.872 0.401

PCBs 0.969 0.995 0.995 0.998 0.998 0.998
All Data 0.973 0.962 0.995 0.998 0.992 0.990
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As it can be seen, for the inorganic fraction, that is, metals, the correlation coefficients between
PM10 versus PM2.5 in the sectors #1 and #2 are poor whereas they improve over 0.6 in sector #3 of both
sites. The low r in #1 and #2 shows different contributions affecting the metals levels over the coal-fired
power plant (#1) or the port (#2); on the other hand, the good correlation coefficients found in #3 of both
sites (sector #3: wind blows from all other directions) mean that the eventual metals emitted by these
two anthropogenic sources do not contribute to their level. Similar considerations can be drawn for
the organic fraction. Particularly, it is interesting the correlation coefficients between PAHs—they are
very good for the urban site (U) ranging between 0.999 (#1) and 0.88 (#2 and #3) whereas they are poor
in Urban Background (UB) ranging between −0.049 (#2) and 0.813 (#3). This is another confirmation
about the important role played by the coal-fired power plant (sector #1) in the air quality of such
urban area as well as the other directions confirm to affect the suburban area.

For better evidencing the correlations among the sectors, a chemometric approach was applied to
overall the data by the use of the Tanagra open-source software [73], by means of the centroid merge
method and the Euclidean distance as a proximity measure [74,75]. Hierarchical Cluster Analysis
(HAC) and Principal Component Analysis (PCA) were used for evidencing eventual similarities.

The HAC shows the presence of three clusters in both sites but the components in the clusters
are differently distributed—in particular, in U site cluster #1 is formed by 198 compounds whereas
clusters #2 and #3 by 1 (Se and Fluorene, respectively, in PM2.5, sector #2, both in fall period); at UB
site cluster #1 is formed by three compounds (Naphthalene in PM2.5, sectors #1 and #2, in winter
period; Cu in PM2.5, sector #1, in fall period) and cluster #3 by 2 (Naphthalene in PM10, sector #2,
in winter; Naphthalene in PM10, sector #2, in fall) whereas cluster #2 by 195 components. Because
the dendrograms are not so explicative, the authors would like to show the PCA representations and
the correlation scatterplots—two variables are able to explain almost 85% of the entire dataset. This
occurrence is a confirmation about the high correlation in the data and the effectiveness of the samplings
performed. Figure 10 shows the PCA (a) and the correlation scatterplot (b) obtained analyzing the data
collected at urban site and the PCA (c) and the correlation scatterplot (d) obtained analyzing the data
collected at suburban site.

The PCA plots (Figure 10a,c) evidence how the clusters are formed. They appear different
according to the locations. The information about Fluorene and Naphthalene is quite important—it
confirms the source apportionment to their levels due to the presence of the large port in the investigated
area. Likewise, Figure 10b,d is also explicative—the PM10 and PM2.5 samples groups in similar ways
in both cases but preferring opposite axes.
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Figure 10. Main results of the chemometric approach to overall the data—Principal Component
Analysis (PCA) (a) and correlation scatter (b) plots obtained in downtown Civitavecchia, U; PCA
(c) and correlation scatter (d) plots obtained in sampling at the suburban area, UB (red: cluster #1;
green: cluster #2; blue: cluster #3).

4. Conclusions

The study performed in the Civitavecchia area has been aimed at highlighting the behavior of
pollutants of hygienic-sanitary interest, such as organic contaminants (PCDD/Fs, PCBs and PAHs) and
inorganic pollutants such as heavy metals, attributable to the emission sources present in the area. This
occurrence has allowed to understand if these pollutants could represent a human health risk for the
resident populations and to recommend the most effective risk reduction and mitigation actions.

This paper is based on well-known analytical approaches, the novelty lies in where the different
procedures were applied and the relative considerations drawn after them. A good analytical approach,
such as performed in this study, is the first step for a correct source apportionment, especially in a very
complex area such as Civitavecchia where different contributions affect the air quality, for example,
power plant, harbor, autovehicular traffic, domestic heating and so forth. For achieving an accurate
source apportionment methodology aimed to understand the real contribution of each source to the air
quality, wind selection devices have proven to be effective in achieving this goal, also coupled with a
more accurate statistical analysis of the analytical results achieved. This is an uncommon sampling
choice (rare, as defined in the introduction) but it has proven itself useful in this approach, few papers
are based on this methodology. GC-MS and ICP-MS procedures according to the European directive
and guidelines for determining organic and inorganic fractions allowed to investigate 59 species (19
metals, 21 PAHs, 17 PCCD/Fs and 12 PCBs), a chemometric analysis (HAC and PCA) was used for
identifying the main compounds responsible in the human exposure. Some doubts, some uncertainty
considerations are still present but they can be overcome by planning studies for a longer period of
time. The important point which the authors would like to emphasize, is that, beyond the results
obtained, the entire methodology (from sampling to the data processing and results evaluation) can be
exported in similar environmental studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/1/94/s1,
Tables S1–S8: Table S1. Metal concentrations in PM10 and PM2.5 fractions sampled in downtown; Table S2. Metal
concentrations in PM10 and PM2.5 fractions sampled in suburban area.; Table S3. PAH concentrations in PM10
and PM2.5 fraction sampled in downtown; Table S4. PAH concentrations in PM10 and PM2.5 fraction sampled
in suburban area; Table S5. PCDD/Fs concentrations PM10 and PM2.5 fraction sampled in downtown; Table S6.
PCDD/Fs concentrations PM10 and PM2.5 fraction sampled in suburban area; Table S7. DL-PCBs concentrations
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PM10 and PM2.5 fraction sampled in downtown; Table S8. DL-PCBs concentrations PM10 and PM2.5 fraction
sampled in suburban area.
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