388 research outputs found

    pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury

    Get PDF
    Serpinin peptides derive from proteolytic cleavage of Chromogranin-A at C-terminus. Serpinin and the more potent pyroglutaminated-Serpinin (pGlu-Serp) are positive cardiac beta-adrenergic-like modulators, acting through β1-AR/AC/cAMP/PKA pathway. Since in some conditions this pathway and/or other pro-survival pathways, activated by other Chromogranin-A fragments, may cross-talk and may be protective, here we explored whether pGlu-Serp cardioprotects against ischemia/reperfusion injury under normotensive and hypertensive conditions. In the latter condition cardioprotection is often blunted because of the limitations on pro-survival Reperfusion-Injury-Salvage-Kinases (RISK) pathway activation. The effects of pGlu-Serp were evaluated on infarct size (IS) and cardiac function by using the isolated and Langendorff perfused heart of normotensive (WKY) and spontaneously hypertensive (SHR) rats exposed to ischemic pre-conditioning (PreC) and post-conditioning (PostC). In both WKY and SHR rat, pGlu-Serp induced mild cardioprotection in both PreC and in PostC. pGlu-Serp administered at the reperfusion (Serp-PostC) significantly reduced IS, being more protective in SHR than in WKY. Conversely, developed Left Ventricular Pressure (LVDevP) post-ischemic recovery was greater in WKY than in SHR. pGlu-Serp-PostC reduced contracture in both strains. Co-infusion with specific RISK inhibitors (PI3K/AkT, MitoK(ATP) channels, and PKC) blocked the pGlu-Serp-PostC protective effects. To show direct effect on cardiomyocytes, we pre-treated H9c2 with pGlu-Serp which were thus protected against hypoxia/reoxygenation. These results suggest pGlu-Serp as a potential modulatory agent implicated in the protective processes which can limit infarct size and overcome the hypertension-induced failure of PostC

    Carbazole and simplified derivatives: Novel tools toward β-adrenergic receptors targeting

    Get PDF
    β-Adrenergic receptors (β-ARs) are G protein-coupled receptors involved in important physiological and pathological processes related to blood pressure and cardiac activity. The inhibition of cardiac β1-ARs could be beneficial in myocardial hypertrophy, ischemia and failure. Several carbazole-based compounds have been described as promising β-blockers. Herein, we investigate the capability of a carbazole derivative and three simplified indole analogs to interact with the active binding site of β1-AR by molecular docking studies. In the light of the obtained results, our compounds were tested by biological assays in H9c2 cardiomyocytes exposed to isoproterenol (ISO) to confirm their potential as β1-blockers agents, and two of them (8 and 10) showed interesting and promising properties. In particular, these compounds were effective against ISO-dependent in vitro cardiac hypertrophy, even at concentrations lower than the known β-AR antagonist propranolol. Overall, the data suggest that the indole derivatives 8 and 10 could act as potent β1-blockers and, active at low doses, could elicit limited side effects

    Catestatin Increases the Expression of Anti-Apoptotic and Pro-Angiogenetic Factors in the Post-Ischemic Hypertrophied Heart of SHR.

    Get PDF
    BACKGROUND:In the presence of comorbidities the effectiveness of many cardioprotective strategies is blunted. The goal of this study was to assess in a hypertensive rat model if the early reperfusion with anti-hypertensive and pro-angiogenic Chromogranin A-derived peptide, Catestatin (CST:hCgA352-372; CST-Post), protects the heart via Reperfusion-Injury-Salvage-Kinases (RISK)-pathway activation, limiting infarct-size and apoptosis, and promoting angiogenetic factors (e.g., hypoxia inducible factor, HIF-1α, and endothelial nitric oxide synthase, eNOS, expression). METHODS AND RESULTS:The effects of CST-Post on infarct-size, apoptosis and pro-angiogenetic factors were studied in isolated hearts of spontaneously hypertensive rats (SHR), which underwent the following protocols: (a) 30-min ischemia and 120-min reperfusion (I/R); (b) 30-min ischemia and 20-min reperfusion (I/R-short), both with and without CST-Post (75 nM for 20-min at the beginning of reperfusion). In unprotected Wistar-Kyoto hearts, used as normal counterpart, infarct-size resulted smaller than in SHR. CST-Post reduced significantly infarct-size and improved post-ischemic cardiac function in both strains. After 20-min reperfusion, CST-Post induced S-nitrosylation of calcium channels and phosphorylation of RISK-pathway in WKY and SHR hearts. Yet specific inhibitors of the RISK pathway blocked the CST-Post protective effects against infarct in the 120-min reperfusion groups. Moreover, apoptosis (evaluated by TUNEL, ARC and cleaved caspase) was reduced by CST-Post. Importantly, CST-Post increased expression of pro-angiogenetic factors (i.e., HIF-1α and eNOS expression) after two-hour reperfusion. CONCLUSIONS:CST-Post limits reperfusion damages and reverses the hypertension-induced increase of I/R susceptibility. Moreover, CST-Post triggers antiapoptotic and pro-angiogenetic factors suggesting that CST-Post can be used as an anti-maladaptive remodeling treatment

    Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development

    Get PDF
    In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches

    Ring closing reaction in diarylethene captured by femtosecond electron crystallography

    Get PDF
    The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials

    Impact of disease progression on individual IPSS trajectories and consequences of immediate versus delayed start of treatment in patients with moderate or severe LUTS associated with BPH

    Get PDF
    PURPOSE: Despite superiority of tamsulosin-dutasteride combination therapy versus monotherapy for lower urinary tract symptoms due to benign prostatic hyperplasia (LUTS/BPH), patients at risk of disease progression are often initiated on α-blockers. This study evaluated the impact of initiating tamsulosin monotherapy prior to switching to tamsulosin-dutasteride combination therapy versus immediate combination therapy using a longitudinal model describing International Prostate Symptom Score (IPSS) trajectories in moderate/severe LUTS/BPH patients at risk of disease progression. METHODS: Clinical trial simulations (CTS) were performed using data from 10,238 patients from Phase III/IV dutasteride trials. The effect of varying disease progression rates was explored by comparing profiles on- and off-treatment. CTS scenarios were investigated, including a reference (immediate combination therapy) and six alternative virtual treatment arms (delayed combination therapy of 1-24 months). Clinical response (≥ 25% IPSS reduction relative to baseline) was analysed using log-rank test. Differences in IPSS relative to baseline at various on-treatment time points were assessed by t tests. RESULTS: Delayed combination therapy initiation led to significant (p < 0.01) decreases in clinical response. At month 48, clinical response rate was 79.7% versus 74.1%, 70.3% and 71.0% and IPSS was 6.3 versus 7.6, 8.1 and 8.0 (switchers from tamsulosin monotherapy after 6, 12 and 24 months, respectively) with immediate combination therapy. More patients transitioned from severe/moderate to mild severity scores by month 48. CONCLUSIONS: CTS allows systematic evaluation of immediate versus delayed combination therapy. Immediate response to α-blockers is not predictive of long-term symptom improvement. Observed IPSS differences between immediate and delayed combination therapy (6-24 months) are statistically significant

    Interacting Ricci Dark Energy with Logarithmic Correction

    Full text link
    Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area AA of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ωΛ\omega_{\Lambda}, the deceleration parameter qq and ΩD′\Omega_D' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.Comment: 24 pages, accepted for publication in 'Astrophysics and Space Science, DOI:10.1007/s10509-012-1031-8
    • …
    corecore