744 research outputs found

    Gravitational wave signatures from discrete flavor symmetries

    Get PDF
    Non-Abelian discrete symmetries have been widely used to explain the patterns of lepton masses and flavor mixing. In these models, a given symmetry is assumed at a high scale and then is spontaneously broken by scalars (the flavons), which acquire vacuum expectation values. Typically, the resulting leading order predictions for the oscillation parameters require corrections in order to comply with neutrino oscillation data. We introduce such corrections through an explicit small breaking of the symmetry. This has the advantage of solving the cosmological problems of these models without resorting to inflation. The explicit breaking induces an energy difference or "bias"between different vacua and drives the evolution of the domain walls, unavoidably produced after the symmetry breaking, towards their annihilation. Importantly, the wall annihilation leads to gravitational waves which may be observed in current and/or future experiments. We show that a distinctive pattern of gravitational waves with multiple overlapped peaks is generated when walls annihilate, which is within the reach of future detectors. We also show that cosmic walls from discrete flavor symmetries can be cosmologically safe for any spontaneous breaking scale between 1 and 1018 GeV, if the bias is chosen adequately, without the need to inflate the walls away. We use as an example a particular A4 model in which an explicit breaking is included in right-handed neutrino mass terms

    EuCARD Newsletter Issue 3

    Get PDF
    European Coordination for Accelerator Research and Development (EuCARD) Newsletter Issue 3: October - December 2009 * A word on behalf of the Steering Committee * Cryocatcher in the GSI * Strategy and the Spallation Source * Accelerators for hadron therapy * For EuCARD members: publication

    Impact of CP phases on neutrinoless double beta decay

    Full text link
    We highlight in a model independent way the dependence of the effective Majorana mass parameter, relevant for neutrinoless double beta decay, on the CP phases of the PMNS matrix, using the most recent neutrino data including the cosmological WMAP measurement. We perform our analysis with three active neutrino flavours in the context of three kinds of mass spectra: quasi-degenerate, normal hierarchical and inverted hierarchical. If a neutrinoless double beta decay experiment records a positive signal, then assuming that Majorana masses of light neutrinos are responsible for it, we show how it might be possible to discriminate between the three kinds of spectra.Comment: 10 pages, latex, 9 eps figs, version to appear in Phys Rev

    Disk Formation by AGB Winds in Dipole Magnetic Fields

    Get PDF
    We present a simple, robust mechanism by which an isolated star can produce an equatorial disk. The mechanism requires that the star have a simple dipole magnetic field on the surface and an isotropic wind acceleration mechanism. The wind couples to the field, stretching it until the field lines become mostly radial and oppositely directed above and below the magnetic equator, as occurs in the solar wind. The interaction between the wind plasma and magnetic field near the star produces a steady outflow in which magnetic forces direct plasma toward the equator, constructing a disk. In the context of a slow (10 km/s) outflow (10^{-5} M_sun/yr) from an AGB star, MHD simulations demonstrate that a dense equatorial disk will be produced for dipole field strengths of only a few Gauss on the surface of the star. A disk formed by this model can be dynamically important for the shaping of Planetary Nebulae.Comment: 14 pages, 8 figures, 1 table, accepted by Ap

    Galaxy cluster lensing masses in modified lensing potentials

    Get PDF
    We determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentration and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ∼(2–20) Mpc h−1 from the cluster centre, we find that the surrounding force profiles are enhanced by ∼20–40 per cent in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model

    Filaments as Possible Signatures of Magnetic Field Structure in Planetary Nebulae

    Full text link
    We draw attention to the extreme filamentary structures seen in high-resolution optical images of certain planetary nebulae. We determine the physical properties of the filaments in the nebulae IC 418, NGC 3132, and NGC 6537, and based on their large length-to-width ratios, longitudinal coherence, and morphology, we suggest that they may be signatures of the underlying magnetic field. The fields needed for the coherence of the filaments are probably consistent with those measured in the precursor circumstellar envelopes. The filaments suggest that magnetic fields in planetary nebulae may have a localized and thread-like geometry.Comment: 26 pages with 7 figures. To be published in PASP. For full resolution images see http://physics.nyu.edu/~pjh

    Neem Oil and Crop Protection: From Now to the Future

    Get PDF
    In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we investigate the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future
    • …
    corecore