169 research outputs found

    Subcellular mRNA localisation at a glance.

    Get PDF
    mRNA localisation coupled to translational regulation provides an important means of dictating when and where proteins function in a variety of model systems. This mechanism is particularly relevant in polarised or migrating cells. Although many of the models for how this is achieved were first proposed over 20 years ago, some of the molecular details are still poorly understood. Nevertheless, advanced imaging, biochemical and computational approaches have started to shed light on the cis-acting localisation signals and trans-acting factors that dictate the final destination of localised transcripts. In this Cell Science at a Glance article and accompanying poster, we provide an overview of mRNA localisation, from transcription to degradation, focusing on the microtubule-dependent active transport and anchoring mechanism, which we will use to explain the general paradigm. However, it is clear that there are diverse ways in which mRNAs become localised and target protein expression, and we highlight some of the similarities and differences between these mechanisms.This work was supported by a Wellcome Trust Senior Research Fellowship to I.D. supporting R.M.P. [grant number: 096144], a studentship from the Wellcome Trust to A.D. [grant number: 097304], the University of Cambridge, ISSF to T.T.W. [grant number 097814].This is the final version of the article. It first appeared from the Company of Biologists via http://dx.doi.org/10.1242/jcs.11427

    Localized Translation of gurken/TGF-α mRNA during Axis Specification Is Controlled by Access to Orb/CPEB on Processing Bodies.

    Get PDF
    In Drosophila oocytes, gurken/TGF-α mRNA is essential for establishing the future embryonic axes. gurken remains translationally silent during transport from its point of synthesis in nurse cells to its final destination in the oocyte, where it associates with the edge of processing bodies. Here we show that, in nurse cells, gurken is kept translationally silent by the lack of sufficient Orb/CPEB, its translational activator. Processing bodies in nurse cells have a similar protein complement and ultrastructure to those in the oocyte, but they markedly less Orb and do not associate with gurken mRNA. Ectopic expression of Orb in nurse cells at levels similar to the wild-type oocyte dorso-anterior corner at mid-oogenesis is sufficient to cause gurken mRNA to associate with processing bodies and translate prematurely. We propose that controlling the spatial distribution of translational activators is a fundamental mechanism for regulating localized translation.This work was supported by a studentship from the Wellcome Trust (grant 097304 to A.D.), a Wellcome Trust Senior Research Fellowship (grant 096144 to I.D and supporting R.M.P), the University of Cambridge, ISSF (grant 097814 to T.T.W), and Wellcome Trust Strategic Awards 091911 and 107457 supporting advanced microscopy at Micron Oxford (http://micronoxford.com).This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.celrep.2016.02.03

    ParticleStats: open source software for the analysis of particle motility and cytoskeletal polarity

    Get PDF
    The study of dynamic cellular processes in living cells is central to biology and is particularly powerful when the motility characteristics of individual objects within cells can be determined and analysed statistically. However, commercial programs only offer a limited range of inflexible analysis modules and there are currently no open source programs for extensive analysis of particle motility. Here, we describe ParticleStats (http://www.ParticleStats.com), a web server and open source programs, which input the X,Y coordinate positions of objects in time, and output novel analyses, graphical plots and statistics for motile objects. ParticleStats comprises three separate analysis programs. First, ParticleStats:Directionality for the global analysis of polarity, for example microtubule plus end growth in Drosophila oocytes. Second, ParticleStats:Compare for the analysis of saltatory movement in terms of runs and pauses. This can be applied to chromosome segregation and molecular motor-based movements. Thirdly ParticleStats:Kymographs for the analysis of kymograph images, for example as applied to separation of chromosomes in mitosis. These analyses have provided key insights into molecular mechanisms that are not possible from qualitative analysis alone and are widely applicable to many other cell biology problems

    A single and rapid calcium wave at egg activation in Drosophila.

    Get PDF
    Activation is an essential process that accompanies fertilisation in all animals and heralds major cellular changes, most notably, resumption of the cell cycle. While activation involves wave-like oscillations in intracellular Ca(2+) concentration in mammals, ascidians and polychaete worms and a single Ca(2+) peak in fish and frogs, in insects, such as Drosophila, to date, it has not been shown what changes in intracellular Ca(2+) levels occur. Here, we utilise ratiometric imaging of Ca(2+) indicator dyes and genetically encoded Ca(2+) indicator proteins to identify and characterise a single, rapid, transient wave of Ca(2+) in the Drosophila egg at activation. Using genetic tools, physical manipulation and pharmacological treatments we demonstrate that the propagation of the Ca(2+) wave requires an intact actin cytoskeleton and an increase in intracellular Ca(2+) can be uncoupled from egg swelling, but not from progression of the cell cycle. We further show that mechanical pressure alone is not sufficient to initiate a Ca(2+) wave. We also find that processing bodies, sites of mRNA decay and translational regulation, become dispersed following the Ca(2+) transient. Based on this data we propose the following model for egg activation in Drosophila: exposure to lateral oviduct fluid initiates an increase in intracellular Ca(2+) at the egg posterior via osmotic swelling, possibly through mechano-sensitive Ca(2+) channels; a single Ca(2+) wave then propagates in an actin dependent manner; this Ca(2+) wave co-ordinates key developmental events including resumption of the cell cycle and initiation of translation of mRNAs such as bicoid.This work was supported by the University of Cambridge, ISSF to T.T.W. [grant number 097814]; and Wellcome Trust Senior Research Fellowship to I.D. [grant number 096144].This is the final version of the article. It first appeared from the Company of Biologists via http://dx.doi.org/10.1242/bio.20141129

    Testing models of mRNA localization reveals robustness regulated by reducing transport between cells

    Get PDF
    Robust control of gene expression in both space and time is of central importance in the regulation of cellular processes and for multicellular development. However, the mechanisms by which robustness is achieved are generally not identified or well understood. For example, messenger RNA (mRNA) localization by molecular motor-driven transport is crucial for cell polarization in numerous contexts, but the regulatory mechanisms that enable this process to take place in the face of noise or significant perturbations are not fully understood. Here, we use a combined experimental-theoretical approach to characterize the robustness of gurken/transforming growth factor-α mRNA localization in Drosophila egg chambers, where the oocyte and 15 surrounding nurse cells are connected in a stereotypic network via intracellular bridges known as ring canals. We construct a mathematical model that encodes simplified descriptions of the range of steps involved in mRNA localization, including production and transport between and within cells until the final destination in the oocyte. Using Bayesian inference, we calibrate this model using quantitative single molecule fluorescence in situ hybridization data. By analyzing both the steady state and dynamic behaviors of the model, we provide estimates for the rates of different steps of the localization process as well as the extent of directional bias in transport through the ring canals. The model predicts that mRNA synthesis and transport must be tightly balanced to maintain robustness, a prediction that we tested experimentally using an overexpression mutant. Surprisingly, the overexpression mutant fails to display the anticipated degree of overaccumulation of mRNA in the oocyte predicted by the model. Through careful model-based analysis of quantitative data from the overexpression mutant, we show evidence of saturation of the transport of mRNA through ring canals. We conclude that this saturation engenders robustness of the localization process in the face of significant variation in the levels of mRNA synthesis

    A PAR-1–dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte

    Get PDF
    A PAR-1–mediated bias in microtubule organization in the Drosophila oocyte underlies posterior-directed mRNA transport

    CytoCensus, mapping cell identity and division in tissues and organs using machine learning.

    Get PDF
    A major challenge in cell and developmental biology is the automated identification and quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily deployed implementation of supervised machine learning that extends convenient 2D 'point-and-click' user training to 3D detection of cells in challenging datasets with ill-defined cell boundaries. In tests on such datasets, CytoCensus outperforms other freely available image analysis software in accuracy and speed of cell detection. We used CytoCensus to count stem cells and their progeny, and to quantify individual cell divisions from time-lapse movies of explanted Drosophila larval brains, comparing wild-type and mutant phenotypes. We further illustrate the general utility and future potential of CytoCensus by analysing the 3D organisation of multiple cell classes in Zebrafish retinal organoids and cell distributions in mouse embryos. CytoCensus opens the possibility of straightforward and robust automated analysis of developmental phenotypes in complex tissues

    Nanometric depth resolution from multi-focal images in microscopy

    Get PDF
    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels

    Democratising "Microscopi": a 3D printed automated XYZT fluorescence imaging system for teaching, outreach and fieldwork

    Get PDF
    Commercial fluorescence microscope stands and fully automated XYZt fluorescence imaging systems are generally beyond the limited budgets available for teaching and outreach. We have addressed this problem by developing “Microscopi”, an accessible, affordable, DIY automated imaging system that is built from 3D printed and commodity off-the-shelf hardware, including electro-mechanical, computer and optical components. Our design features automated sample navigation and image capture with a simple web-based graphical user interface, accessible with a tablet or other mobile device. The light path can easily be switched between different imaging modalities. The open source Python-based control software allows the hardware to be driven as an integrated imaging system. Furthermore, the microscope is fully customisable, which also enhances its value as a learning tool. Here, we describe the basic design and demonstrate imaging performance for a range of easily sourced specimens
    corecore