7,223 research outputs found

    Non-hermitian approach to decaying ultracold bosonic systems

    Full text link
    A paradigm model of modern atom optics is studied, strongly interacting ultracold bosons in an optical lattice. This many-body system can be artificially opened in a controlled manner by modern experimental techniques. We present results based on a non-hermitian effective Hamiltonian whose quantum spectrum is analyzed. The direct access to the spectrum of the metastable many-body system allows us to easily identify relatively stable quantum states, corresponding to previously predicted solitonic many-body structures

    Quantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming

    Get PDF
    This paper concerns parameterized convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional Banach (resp. finite-dimensional) spaces and that are indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand side of the inequalities are measurable and bounded, and thus the natural parameter space is l(T)l_{\infty}(T). Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map, which involves only the system data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. On one hand, in this way we extend to the convex setting the results of [4] developed in the linear framework under the boundedness assumption on the system coefficients. On the other hand, in the case when the decision space is reflexive, we succeed to remove this boundedness assumption in the general convex case, establishing therefore results new even for linear infinite and semi-infinite systems. The last part of the paper provides verifiable necessary optimality conditions for infinite and semi-infinite programs with convex inequality constraints and general nonsmooth and nonconvex objectives. In this way we extend the corresponding results of [5] obtained for programs with linear infinite inequality constraints

    Short-term memory binding in mild cognitive impairment

    Get PDF
    We showed that short-term memory (STM) binding is sensitive to sporadic and familial Alzheimer's disease (AD) but is not affected by healthy ageing, chronic depression in the elderly or other forms of dementia. STM binding deficits were also observed in individuals with a genetic susceptibility for AD in the preclinical stages. Hence, we aim to investigate longitudinally individuals with Mild Cognitive Impairment (MCI) using STM binding tasks. Here we report on preliminary cross-sectional results. A comprehensive neuropsychological test battery and a visual STM task were given to 21 MCI patients and 20 controls. The STM task required participants to recognise changes across two consecutive arrays presenting either single features (colour or shape) or feature bindings. The MCI group performed significantly poorer than controls on standard tests of memory, attention and on the binding condition of the STM task, but not on single feature conditions. Performance on the binding task and on standard memory tests did not correlate. Eight MCI patients clearly performed outwith the range of normality in the binding task. However, they did not significantly differ from the other 13 MCI patients in disease severity or demographic and neuropsychological variables. Six patients with binding impairments showed a multiple domain profile whereas ten patients with a preserved binding function showed an amnesic profile [Chi-square = 5.45, p = 0.020]. These results suggest that (1) the binding task is assessing a function different from other memory tests and that (2) STM binding may be differentially impaired in MCI subgroups

    Turbulent transport in tokamak plasmas with rotational shear

    Full text link
    Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E x B shear value for plasma confinement. Local maxima in the momentum fluxes are also observed, allowing for the possibility of bifurcations in the E x B shear. The sensitive dependence of heat flux on temperature gradient is relaxed for large flow shear values, with the critical temperature gradient increasing at lower flow shear values. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.Comment: 4 pages, 5 figures, submitted to PR

    Wave attenuation and dispersion due to floating ice covers

    Full text link
    Experiments investigating the attenuation and dispersion of surface waves in a variety of ice covers are performed using a refrigerated wave flume. The ice conditions tested in the experiments cover naturally occurring combinations of continuous, fragmented, pancake and grease ice. Attenuation rates are shown to be a function of ice thickness, wave frequency, and the general rigidity of the ice cover. Dispersion changes were minor except for large wavelength increases when continuous covers were tested. Results are verified and compared with existing literature to show the extended range of investigation in terms of incident wave frequency and ice conditions

    Zero-Turbulence Manifold in a Toroidal Plasma

    Full text link
    Sheared toroidal flows can cause bifurcations to zero-turbulent-transport states in tokamak plasmas. The maximum temperature gradients that can be reached are limited by subcritical turbulence driven by the parallel velocity gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect ratio) is a critical control parameter for sheared tokamak turbulence. By reducing q/\epsilon, far higher temperature gradients can be achieved without triggering turbulence, in some instances comparable to those found experimentally in transport barriers. The zero-turbulence manifold is mapped out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E, q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is the normalised inverse temperature gradient scale. The extent to which it can be constructed from linear theory is discussed.Comment: 5 Pages, 4 Figures, Submitted to PR
    corecore