1,488 research outputs found
Recommended from our members
Microbial preservation in sulfates in the Haughton impact structure suggests target in search for life on Mars
Microbes occur within transparent gypsum crystals in the Haughton crater. The crystals transmit light for photosynthesis, but protect from dehydration and wind. Sulfates on the Martian surface should be a priority target in the search for life
Recommended from our members
Simple devices for concentration of microbial life: Experiments in Haughton impact structure
Simple devices that create environments with high levels of light and moisture could attract extant microbial life on a planetary surface and hence enhance the detection of it. Experience in the Haughton crater shows that this can occur readily
Recommended from our members
Hopane biomarkers traced from bedrock to recent sediments and ice at the Haughton Impact Structure, Devon Island: Implications for the search for biomarkers on Mars
Hopanoid biomarkers have been traced from bedrock to ice in the Haughton Impact Structure, suggesting that they represent a promising strategy in the search for life in ice deposits on Mars and other icy bodies
Recommended from our members
Surface mineral crusts: A priority target in search for life on Mars
Mineral crusts are strong candidates in the search for evidence of life during planetary exploration, and should be an important target for examination in impact craters. Crusts in the Haughton crater readily yield a biological signature
A five year outbreak of methicillin-susceptible Staphylococcus aureus phage type 53,85 in a regional neonatal unit
We identified a 5-year outbreak of a methicillin-susceptible Staphylococcus aureus (MSSA) strain, affecting 202 babies on a neonatal unit, by routine weekly phage typing all S. aureus isolates. Multiple staged control measures including strict emphasis on hand hygiene, environmental and staff surveillance sampling, and application of topical hexachlorophane powder failed to end the outbreak. S. aureus PT 53,85 (SA5385) was found on opened packs of Stomahesive®, used as a neonatal skin protectant.
Only following the implementation of aseptic handling of Stomahesive®, and the use of topical mupirocin for staff nasal carriers of SA5385, and for babies colonized or infected with S. aureus, did the isolation rate of SA5385 decline. DNA fingerprinting indicated that [gt-or-equal, slanted]95% of SA5385 isolates were clonal. In vitro death rates of SA5385 on Stomahesive® with human serum were significantly lower than on Stomahesive® alone (P = 0·04), and on cotton sheet with serum (P = 0·04), highlighting the potential of this material as a survival niche. Phage typing remains a valuable, inexpensive and simple method for monitoring nosocomial MSSA infection
Measurements and calculations of the Coulomb cross section for the production of direct electron pairs by energetic heavy nuclei in nuclear track emulsion
Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed
Relative sea-level change in Connecticut (USA) during the last 2200 yrs
We produced a relative sea-level (RSL) reconstruction from Connecticut (USA) spanning the last ∼2200 yrs that is free from the influence of sediment compaction. The reconstruction used a suite of vertically- and laterally-ordered sediment samples ≤2 cm above bedrock that were collected by excavating a trench along an evenly-sloped bedrock surface. Paleomarsh elevation was reconstructed using a regional-scale transfer function trained on the modern distribution of foraminifera on Long Island Sound salt marshes and supported by bulk-sediment δ13C measurements. The history of sediment accumulation was estimated using an age-elevation model constrained by radiocarbon dates and recognition of pollution horizons of known age. The RSL reconstruction was combined with regional tide-gauge measurements spanning the last ∼150 yrs before being quantitatively analyzed using an error-in-variables integrated Gaussian process model to identify sea-level trends with formal and appropriate treatment of uncertainty and the temporal distribution of data. RSL rise was stable (∼1 mm/yr) from ∼200 BCE to ∼1000 CE, slowed to a minimum rate of rise (0.41 mm/yr) at ∼1400 CE, and then accelerated continuously to reach a current rate of 3.2 mm/yr, which is the fastest, century-scale rate of the last 2200 yrs. Change point analysis identified that modern rates of rise in Connecticut began at 1850–1886 CE. This timing is synchronous with changes recorded at other sites on the U.S. Atlantic coast and is likely the local expression of a global sea-level change. Earlier sea-level trends show coherence north of Cape Hatteras that are contrasted with southern sites. This pattern may represent centennial-scale variability in the position and/or strength of the Gulf Stream. Comparison of the new record to three existing and reanalyzed RSL reconstructions from the same site developed using sediment cores indicates that compaction is unlikely to significantly distort RSL reconstructions produced from shallow (∼2–3 m thick) sequences of salt-marsh peat
Naturally propped fractures caused by quartz cementation preserve oil reservoirs in basement rocks
MB is in receipt of a postgraduate studentship from PTDF (Nigeria). Skilled technical support was provided by M. Baron and J. Still. Two reviewers made valuable criticisms that improved the paper.Peer reviewedPostprin
Coral Disease and Health Workshop: Coral Histopathology II
The health and continued existence of coral reef ecosystems are threatened by an increasing array of environmental and anthropogenic impacts. Coral disease is one of the prominent causes of increased mortality among reefs globally, particularly in the Caribbean. Although over 40 different coral diseases and syndromes have been reported
worldwide, only a few etiological agents have been confirmed; most pathogens remain unknown and the dynamics of disease transmission, pathogenicity and mortality are not
understood. Causal relationships have been documented for only a few of the coral diseases, while new syndromes continue to emerge. Extensive field observations by coral
biologists have provided substantial documentation of a plethora of new pathologies, but our understanding, however, has been limited to descriptions of gross lesions with names reflecting these observations (e.g., black band, white band, dark spot). To determine etiology, we must equip coral diseases scientists with basic biomedical knowledge and specialized training in areas such as histology, cell biology and pathology. Only through
combining descriptive science with mechanistic science and employing the synthesis epizootiology provides will we be able to gain insight into causation and become equipped to handle the pending crisis.
One of the critical challenges faced by coral disease researchers is to establish a framework to systematically study coral pathologies drawing from the field of diagnostic
medicine and pathology and using generally accepted nomenclature. This process began in April 2004, with a workshop titled Coral Disease and Health Workshop: Developing Diagnostic Criteria co-convened by the Coral Disease and Health Consortium (CDHC), a working group organized under the auspices of the U.S. Coral Reef Task Force, and the International Registry for Coral Pathology (IRCP). The workshop was hosted by the U.S. Geological Survey, National Wildlife Health Center (NWHC) in Madison, Wisconsin and was focused on gross morphology and disease signs observed in the field. A resounding recommendation from the histopathologists participating in the workshop was the urgent need to develop diagnostic criteria that are suitable to move from gross observations to morphological diagnoses based on evaluation of microscopic anatomy. (PDF contains 92 pages
- …