5 research outputs found

    IoT-Fog-Edge-Cloud Computing Simulation Tools, A Systematic Review

    Get PDF
    The Internet of Things (IoT) perspective promises substantial advancements in sectors such as smart homes and infrastructure, smart health, smart environmental conditions, smart cities, energy, transportation and mobility, manufacturing and retail, farming, and so on. Cloud computing (CC) offers appealing computational and storage options; nevertheless, cloud-based explanations are frequently conveyed by downsides and constraints, such as energy consumption, latency, privacy, and bandwidth. To address the shortcomings related to CC, the advancements like Fog Computing (FC) and Edge Computing (EC) are introduced later on. FC is a novel and developing technology that connects the cloud to the network edges, allowing for decentrali zed computation. EC, in which processing and storage are performed nearer to where data is created, may be able to assist address these issues by satisfying particular needs such as low latency or lower energy use. This study provides a comprehensive overview and analysis of IoT-Fog-Edge-Cloud Computing simulation tools to assist researchers and developers in selecting the appropriate device for research studies while working through various scenarios and addressing current reality challenges. This study also takes a close look at various modeling tools, which are examined and contrasted to improve the future

    Design and Discovery of Sensor Web Registry Services for Wireless Sensor Network with x-SOA Approach

    Get PDF
    The application of wireless sensor network is emerging as a new trend in different sphere of modern society. However due to the advancement of SWE, designing & discovering sensor web registry services throughout heterogeneous environments is becoming a challenging task and raises several concerns like performance, reliability, and robustness. Many approaches and frameworks have been proposed to discover the sensor web registry services. Some of the approaches assume that the requests are placed in SOAP compatible formats while others focus on GUI based parametric query processing. We have formulated an approach that uses the Natural Language Query Processing which is a convenient and easy method of data access, especially for casual users who do not understand complicated database query languages such as SQL or XML based Query Language like XQuery and XPath. SOA is the proven technology for designing an efficient Sensor Web Registry by describing various parameters and sensor web services needed. We also propose an architecture based on x-SOA that organizes the method of sensor web registry service discovery in an efficient and structured manner using an intermediary, requester friendly layer called the Request Parser & Query Generator (RPQ) between the service provider and service requester via a service registry. We describe how RPQ facilitates the processing of plain text request query to a most appropriate sensor web service and also an algorithm with implementation for a complete cycle of sensor web registry service discovery

    FOHC: Firefly Optimizer Enabled Hybrid approach for Cancer Classification

    Get PDF
    Early detection and prediction of cancer, a group of chronic diseases responsible for a large number of deaths each year and a serious public health hazard, can lead to more effective treatment at an earlier stage in the disease's progression. In the current era, machine learning (ML) has widely been used to develop predictive models for incurable diseases such as cancer, heart disease, and diabetes, among others, taking into account both existing datasets and personally collected datasets, more research is still being conducted in this area. Using recursive feature elimination (RFE), principal component analysis (PCA), the Firefly Algorithm (FA), and a support vector machine (SVM) classifier, this study proposed a Firefly Optimizer-enabled Hybrid approach for Cancer classification (FOHC). This study considers feature selection and dimensionality reduction techniques RFE and PCA, and FA is used as the optimization algorithm. In the last stage, the SVM is applied to the pre-processed dataset as the classifier. To evaluate the proposed model, empirical analysis has been carried out on three different kinds of cancer disease datasets including Brain, Breast, and Lung cancer obtained from the UCI-ML warehouse. Based on the various performance parameters like accuracy, error rate, precision, recall, f-measure, etc., some experiments are carried out on the Jupyter platform using Python codes. This proposed model, FOHC, surpasses previous methods and other considered state-of-the-art works, with 98.94% accuracy for Breast cancer, 95.58% accuracy for Lung cancer, and 96.34% accuracy for Brain cancer. The outcomes of these experiments represent the effectiveness of the proposed work

    CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis

    No full text
    Breast cancer poses the greatest long-term health risk to women worldwide, in both industrialized and developing nations. Early detection of breast cancer allows for treatment to begin before the disease has a chance to spread to other parts of the body. The Internet of Things (IoT) allows for automated analysis and classification of medical pictures, allowing for quicker and more effective data processing. Nevertheless, Fog computing principles should be used instead of Cloud computing concepts alone to provide rapid responses while still meeting the requirements for low latency, energy consumption, security, and privacy. In this paper, we present CanDiag, an approach to cancer diagnosis based on Transfer Deep Learning (TDL) that makes use of Fog computing. This paper details an automated, real-time approach to diagnosing breast cancer using deep learning (DL) and mammography pictures from the Mammographic Image Analysis Society (MIAS) library. To obtain better prediction results, transfer learning (TL) techniques such as GoogleNet, ResNet50, ResNet101, InceptionV3, AlexNet, VGG16, and VGG19 were combined with the well-known DL approach of the convolutional neural network (CNN). The feature reduction technique principal component analysis (PCA) and the classifier support vector machine (SVM) were also applied with these TDLs. Detailed simulations were run to assess seven performance and seven network metrics to prove the viability of the proposed approach. This study on an enormous dataset of mammography images categorized as normal and abnormal, respectively, achieved an accuracy, MCR, precision, sensitivity, specificity, f1-score, and MCC of 99.01%, 0.99%, 98.89%, 99.86%, 95.85%, 99.37%, and 97.02%, outperforming some previous studies based on mammography images. It can be shown from the trials that the inclusion of the Fog computing concepts empowers the system by reducing the load on centralized servers, increasing productivity, and maintaining the security and integrity of patient data
    corecore