63 research outputs found

    Delirium in the intensive care unit

    Get PDF
    Delirium, an acute and fluctuating disturbance of consciousness and cognition, is a common manifestation of acute brain dysfunction in critically ill patients, occurring in up to 80% of the sickest intensive care unit (ICU) populations. Critically ill patients are subject to numerous risk factors for delirium. Some of these, such as exposure to sedative and analgesic medications, may be modified to reduce risk. Although dysfunction of other organ systems continues to receive more clinical attention, delirium is now recognized to be a significant contributor to morbidity and mortality in the ICU, and it is recommended that all ICU patients be monitored using a validated delirium assessment instrument. Patients with delirium have longer hospital stays and lower 6-month survival than do patients without delirium, and preliminary research suggests that delirium may be associated with cognitive impairment that persists months to years after discharge. Little evidence exists regarding the prevention and treatment of delirium in the ICU, but multicomponent interventions reduce the incidence of delirium in non-ICU studies. Strategies for the prevention and treatment of ICU delirium are the subjects of multiple ongoing investigations

    Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Severe TBI, defined as a Glasgow Coma Scale ≤ 8, increases intracranial pressure and activates the sympathetic nervous system. Sympathetic hyperactivity after TBI manifests as catecholamine excess, hypertension, abnormal heart rate variability, and agitation, and is associated with poor neuropsychological outcome. Propranolol and clonidine are centrally acting drugs that may decrease sympathetic outflow, brain edema, and agitation. However, there is no prospective randomized evidence available demonstrating the feasibility, outcome benefits, and safety for adrenergic blockade after TBI. METHODS/DESIGN: The DASH after TBI study is an actively accruing, single-center, randomized, double-blinded, placebo-controlled, two-arm trial, where one group receives centrally acting sympatholytic drugs, propranolol (1 mg intravenously every 6 h for 7 days) and clonidine (0.1 mg per tube every 12 h for 7 days), and the other group, double placebo, within 48 h of severe TBI. The study uses a weighted adaptive minimization randomization with categories of age and Marshall head CT classification. Feasibility will be assessed by ability to provide a neuroradiology read for randomization, by treatment contamination, and by treatment compliance. The primary endpoint is reduction in plasma norepinephrine level as measured on day 8. Secondary endpoints include comprehensive plasma and urine catecholamine levels, heart rate variability, arrhythmia occurrence, infections, agitation measures using the Richmond Agitation-Sedation Scale and Agitated Behavior scale, medication use (anti-hypertensive, sedative, analgesic, and antipsychotic), coma-free days, ventilator-free days, length of stay, and mortality. Neuropsychological outcomes will be measured at hospital discharge and at 3 and 12 months. The domains tested will include global executive function, memory, processing speed, visual-spatial, and behavior. Other assessments include the Extended Glasgow Outcome Scale and Quality of Life after Brain Injury scale. Safety parameters evaluated will include cardiac complications. DISCUSSION: The DASH After TBI Study is the first randomized, double-blinded, placebo-controlled trial powered to determine feasibility and investigate safety and outcomes associated with adrenergic blockade in patients with severe TBI. If the study results in positive trends, this could provide pilot evidence for a larger multicenter randomized clinical trial. If there is no effect of therapy, this trial would still provide a robust prospective description of sympathetic hyperactivity after TBI. TRIAL REGISTRATION: ClinicalTrials.gov NCT0132204

    Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial

    Get PDF
    Abstract Introduction Benzodiazepines and α2 adrenoceptor agonists exert opposing effects on innate immunity and mortality in animal models of infection. We hypothesized that sedation with dexmedetomidine (an α2 adrenoceptor agonist), as compared with lorazepam (a benzodiazepine), would provide greater improvements in clinical outcomes among septic patients than among non-septic patients. Methods In this a priori-determined subgroup analysis of septic vs non-septic patients from the MENDS double-blind randomized controlled trial, adult medical/surgical mechanically ventilated patients were randomized to receive dexmedetomidine-based or lorazepam-based sedation for up to 5 days. Delirium and other clinical outcomes were analyzed comparing sedation groups, adjusting for clinically relevant covariates as well as assessing interactions between sedation group and sepsis. Results Of the 103 patients randomized, 63 (31 dexmedetomidine; 32 lorazepam) were admitted with sepsis and 40 (21 dexmedetomidine; 19 lorazepam) without sepsis. Baseline characteristics were similar between treatment groups for both septic and non-septic patients. Compared with septic patients who received lorazepam, the dexmedetomidine septic patients had 3.2 more delirium/coma-free days (DCFD) on average (95% CI for difference, 1.1 to 4.9), 1.5 (-0.1, 2.8) more delirium-free days (DFD) and 6 (0.3, 11.1) more ventilator-free days (VFD). The beneficial effects of dexmedetomidine were more pronounced in septic patients than in non-septic patients for both DCFDs and VFDs (P-value for interaction = 0.09 and 0.02 respectively). Additionally, sedation with dexmedetomidine, compared with lorazepam, reduced the daily risk of delirium [OR, CI 0.3 (0.1, 0.7)] in both septic and non-septic patients (P-value for interaction = 0.94). Risk of dying at 28 days was reduced by 70% [hazard ratio 0.3 (0.1, 0.9)] in dexmedetomidine patients with sepsis as compared to the lorazepam patients; this reduction in death was not seen in non-septic patients (P-value for interaction = 0.11). Conclusions In this subgroup analysis, septic patients receiving dexmedetomidine had more days free of brain dysfunction and mechanical ventilation and were less likely to die than those that received a lorazepam-based sedation regimen. These results were more pronounced in septic patients than in non-septic patients. Prospective clinical studies and further preclinical mechanistic studies are needed to confirm these results. Trial Registration NCT00095251

    Advancing specificity in delirium: The delirium subtyping initiative

    Get PDF
    BACKGROUND: Delirium, a common syndrome with heterogeneous etiologies and clinical presentations, is associated with poor long-term outcomes. Recording and analyzing all delirium equally could be hindering the field's understanding of pathophysiology and identification of targeted treatments. Current delirium subtyping methods reflect clinically evident features but likely do not account for underlying biology. METHODS: The Delirium Subtyping Initiative (DSI) held three sessions with an international panel of 25 experts. RESULTS: Meeting participants suggest further characterization of delirium features to complement the existing Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision diagnostic criteria. These should span the range of delirium-spectrum syndromes and be measured consistently across studies. Clinical features should be recorded in conjunction with biospecimen collection, where feasible, in a standardized way, to determine temporal associations of biology coincident with clinical fluctuations. DISCUSSION: The DSI made recommendations spanning the breadth of delirium research including clinical features, study planning, data collection, and data analysis for characterization of candidate delirium subtypes. HIGHLIGHTS: Delirium features must be clearly defined, standardized, and operationalized. Large datasets incorporating both clinical and biomarker variables should be analyzed together. Delirium screening should incorporate communication and reasoning

    Comfort and patient-centred care without excessive sedation:the eCASH concept

    Get PDF
    We propose an integrated and adaptable approach to improve patient care and clinical outcomes through analgesia and light sedation, initiated early during an episode of critical illness and as a priority of care. This strategy, which may be regarded as an evolution of the Pain, Agitation and Delirium guidelines, is conveyed in the mnemonic eCASH—early Comfort using Analgesia, minimal Sedatives and maximal Humane care. eCASH aims to establish optimal patient comfort with minimal sedation as the default presumption for intensive care unit (ICU) patients in the absence of recognised medical requirements for deeper sedation. Effective pain relief is the first priority for implementation of eCASH: we advocate flexible multimodal analgesia designed to minimise use of opioids. Sedation is secondary to pain relief and where possible should be based on agents that can be titrated to a prespecified target level that is subject to regular review and adjustment; routine use of benzodiazepines should be minimised. From the outset, the objective of sedation strategy is to eliminate the use of sedatives at the earliest medically justifiable opportunity. Effective analgesia and minimal sedation contribute to the larger aims of eCASH by facilitating promotion of sleep, early mobilization strategies and improved communication of patients with staff and relatives, all of which may be expected to assist rehabilitation and avoid isolation, confusion and possible long-term psychological complications of an ICU stay. eCASH represents a new paradigm for patient-centred care in the ICU. Some organizational challenges to the implementation of eCASH are identified.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    ICU sedation with dexmedetomidine after severe traumatic brain injury

    Full text link
    We investigate limit models resulting from a dimensional analysis of quite general heterogeneous catalysis models with fast sorption (i.e.\ exchange of mass between the bulk phase and the catalytic surface of a reactor) and fast surface chemistry for a prototypical chemical reactor. For the resulting reaction-diffusion systems with linear boundary conditions on the normal mass fluxes, but at the same time nonlinear boundary conditions on the concentrations itself, we provide analytic properties such as local-in time well-posedness, positivity and global existence of strong solutions in the class Wp(1,2)(J×Ω;RN)\mathrm{W}^{(1,2)}_p(J \times \Omega; \mathbb{R}^N), and of classical H\"older solutions in the class C(1+α,2+2α)(J×Ω)\mathrm{C}^{(1+\alpha, 2 + 2\alpha)}(\overline J \times \overline{\Omega}). Exploiting that the model is based on thermodynamic principles, we further show a priori bounds related to mass conservation and the entropy principle.Comment: 29 pages, submitted to Journal of Evolution Equation
    corecore