19,792 research outputs found

    GRB000301C with peculiar afterglow emission

    Get PDF
    The CCD magnitudes in Johnson V and Cousins R and I photometric passbands are determined for GRB 000301C afterglow starting ~ 1.5 day after the gamma-ray burst. In fact we provide the earliest optical observations for this burst. Light curves of the afterglow emissions in U, B, V, R, I, J and K' passbands are obtained by combining the present measurements with the published data. Flux decay shows a very uncommon variation relative to other well observed GRBs. Overall, there is a steepening of the optical and near-infrared flux decay caused by a geometric and sideways expanding jet. This is superimposed by a short term variability especially during early time (Delta t < 8 days). The cause of variability is not well understood, though it has occurred simultaneously with similar amplitude in all the filters. We derive the early and late time flux decay constants using jet model. The late time flux decay is the steepest amongst the GRB OTs observed so far with alpha ~ 3. Steepening in the flux decay seems to have started simultaneously around Delta t ~ 7.6 day in all passbands. The value of spectral index in the optical-near IR region is ~ -1.0. Redshift determination with z=2.0335 indicates cosmological origin of the GRB having a luminosity distance of 16.6 Gpc. Thus it becomes the second farthest amongst the GRBs with known distances. An indirect estimate of the fluence > 20 keV indicates, if isotropic,> =10^53 ergs of release of energy. The enormous amount of released energy will be reduced, if the radiation is beamed which is the case for this event. Using a jet break time of 7.6 days, we infer a jet opening angle of ~ 0.15 radian. This means the energy released is reduced by a factor of ~ 90 relative to the isotropic value.Comment: LaTeX file, 11 pages including 4 figures, uses psfig.sty, Bull. Astron. Society of India(accepted, Sept, 2000 issue

    Cusp-shaped Elastic Creases and Furrows

    Get PDF
    The surfaces of growing biological tissues, swelling gels, and compressed rubbers do not remain smooth, but frequently exhibit highly localized inward folds. We reveal the morphology of this surface folding in a novel experimental setup, which permits to deform the surface of a soft gel in a controlled fashion. The interface first forms a sharp furrow, whose tip size decreases rapidly with deformation. Above a critical deformation, the furrow bifurcates to an inward folded crease of vanishing tip size. We show experimentally and numerically that both creases and furrows exhibit a universal cusp-shape, whose width scales like y3/2y^{3/2} at a distance yy from the tip. We provide a similarity theory that captures the singular profiles before and after the self-folding bifurcation, and derive the length of the fold from large deformation elasticity.Comment: 5 pages, 4 figure

    On quantum plasma: a plea for a common sense

    Full text link
    The quantum plasma theory has flourished in the past few years without much regard to the physical validity of the formulation or its connection to any real physical system. It is argued here that there is a very limited physical ground for the application of such a theory.Comment: EPL, to be published 201
    • …
    corecore