10 research outputs found

    Reasons behind late presentation of cancer patients to radiotherapy department of a tertiary Hospital in Southern Odisha: a cross sectional study

    Get PDF
    Background: Prevalence of cancer is increasing worldwide. Early diagnosis with appropriate therapeutic interventions is essential for better treatment outcome. Identification and necessary modifications of factors responsible for delayed presentation might increase the life expectancy or quality of living. This study aims to identify the factors responsible for delayed presentation of cancer patients to radiotherapy department.Methods: This is a quantitative descriptive study, done with in a period from August 2018 to October 2019, among 120 cancer patients of different stages presenting to OPD of Radiotherapy department of M.K.C.G Medical College. Data were collected by using pretested semi-structured questionnaires, entered into Microsoft Excel and analyzed by using SPSS version 20.0.Results: A total of 120 cancer patients, 60 from each early and late stage had participated in the study. The mean age of presentation was 53.19 years. The number of male patients were 54 and female were 66. Maximum patients had addiction of chewing tobacco. When the time interval from appearance of symptoms to diagnosis were compared, 1 – 3 months were taken by 45% of early stage and 28.3% of late stage patients. Similarly, <1week time was taken from diagnosis to start of treatment in 25% and 13.3% in respective groups. Comparison of educational status (p=0.001), difference between primary and secondary delay (p<0.05), and socio-economic status (p=0.008) between both the groups were found to be statistically significant.Conclusions: Factors responsible for delayed presentation are related both to patient and system. Educating common people regarding early sign symptoms, emphasizing early detection at grass root level, proper referral and by upgrading existing oncology facilities, we can avoid adverse treatment outcome

    Organisms isolated from endotracheal aspirate and their sensitivity pattern in patients suspected of ventilator associated pneumonia in a tertiary care hospital

    Get PDF
    Background: Ventilator associated pneumonia in critically ill patients are associated with high morbidity and mortality. Patients who are mechanically ventilated are at high risk of acquiring respiratory infections due to complex interplay between the endotracheal tube, host immunity and virulence of invading bacteria. To start empiric antimicrobial therapy knowledge of local antimicrobial resistance patterns are essential. Objectives of our study was to study antimicrobial sensitivity among organisms isolated from endotracheal aspirates of patients with VAP.Methods: This is a prospective observational study, done in 100 patients who were mechanically ventilated for various reasons in ICU of our hospital over a period of one year. Clinical parameters, investigation, microbiological profile and sensitive characteristics of endotracheal aspirate was recorded and analyzed.Results: Endotracheal aspirate culture and sensitivity was done in 100 patients.70 samples showed significant growth. Acinetobacter were isolated in 30 samples, Pseudomonas in 24, Klebsiella in 8, Enterobacter in 1, Citrobacter in 1 and Staphylococcus in 6 samples. Acinetobacter, Pseudomonas and Klebsiella were highly sensitive to colistin and polymyxin B, intermittently sensitive to meropenem and showed resistance to most of commonly used antibiotics.Conclusions: The commonest organism isolated endo-tracheal aspirate cultures were Acinetobacter and Pseudomonas which was highly sensitive to colistin and polymyxin B. A local antibiogram for each hospital, based on bacteriological patterns and susceptibilities is essential not only to initiate empiric therapy but also to prevent poor outcomes and help in framing the appropriate institutional antibiotic policy

    Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity

    Get PDF
    Light induced biosynthesis of polycrystalline silver nanoparticles (SNPs) using the aqueous extract of a diatom Amphora-46 was studied. Rapid formation of stable SNPs was observed only on exposure of the reaction mixture to light. Strong surface plasmon resonance at 415 nm due to SNP formation was confirmed by spectroscopic analysis. TEM analysis confirmed the formation of polycrystalline spherical SNPs of an average size of 20–25 nm which was further corroborated by XRD, EDAX and SAED results. Compositional analysis using EDAX showed strong characteristic signal for silver. The XRD spectra show four intense diffraction peaks at 38.48°, 44°, 64.74°, and 77.4° which correspond well to (111), (200), (220), and (311) plane of (fcc) polycrystalline SNP and the intensity of peak at (111) plane is more than the other peaks, suggesting that this plane is the predominant one. Both XRD and SAED results clearly indicated that the SNPs were polycrystalline in nature and were of high purity. The bio-molecule responsible for the reduction of silver ion was identified to be a photosynthetic pigment fucoxanthin, which is light sensitive and acts as a reducing agent. Furthermore, the synthesized SNPs possess significant antimicrobial activity against gram positive and gram negative bacteria. This study demonstrates for the first time, the involvement of photosynthetic pigment fucoxanthin isolated from Amphora-46 in silver nanoparticle formation through a light dependent reaction

    Organisms isolated from endotracheal aspirate and their sensitivity pattern in patients suspected of ventilator associated pneumonia in a tertiary care hospital

    No full text
    Background: Ventilator associated pneumonia in critically ill patients are associated with high morbidity and mortality. Patients who are mechanically ventilated are at high risk of acquiring respiratory infections due to complex interplay between the endotracheal tube, host immunity and virulence of invading bacteria. To start empiric antimicrobial therapy knowledge of local antimicrobial resistance patterns are essential. Objectives of our study was to study antimicrobial sensitivity among organisms isolated from endotracheal aspirates of patients with VAP.Methods: This is a prospective observational study, done in 100 patients who were mechanically ventilated for various reasons in ICU of our hospital over a period of one year. Clinical parameters, investigation, microbiological profile and sensitive characteristics of endotracheal aspirate was recorded and analyzed.Results: Endotracheal aspirate culture and sensitivity was done in 100 patients.70 samples showed significant growth. Acinetobacter were isolated in 30 samples, Pseudomonas in 24, Klebsiella in 8, Enterobacter in 1, Citrobacter in 1 and Staphylococcus in 6 samples. Acinetobacter, Pseudomonas and Klebsiella were highly sensitive to colistin and polymyxin B, intermittently sensitive to meropenem and showed resistance to most of commonly used antibiotics.Conclusions: The commonest organism isolated endo-tracheal aspirate cultures were Acinetobacter and Pseudomonas which was highly sensitive to colistin and polymyxin B. A local antibiogram for each hospital, based on bacteriological patterns and susceptibilities is essential not only to initiate empiric therapy but also to prevent poor outcomes and help in framing the appropriate institutional antibiotic policy

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-

    Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways

    No full text

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore