75 research outputs found

    Myocardial perfusion and viability by positron emission tomography in infants and children with coronary abnormalities correlation with echocardiography,coronary angiography, and histopathology

    Get PDF
    AbstractObjectivesThis study was designed to assess the feasibility and accuracy of positron emission tomography (PET) imaging in infants and children.BackgroundPositron emission tomography is employed in adults for the evaluation of myocardial perfusion and the detection of myocardial viability.MethodsPerfusion and metabolism findings on PET in infants and children with suspected coronary abnormalities (age 14 days to 12 years old, mean 3.3 ± 4.0 years) were correlated with findings on coronary angiography, echocardiography, and myocardial histopathology. The segmental myocardial uptake of the flow tracer 13N-ammonia and of the glucose tracer 18F-deoxyglucose (18FDG) was graded on a five-point scale and compared with the angiographic perfusion score, with regional wall motion, and the presence of fibrosis.ResultsThere was an agreement of r = 0.72 (p < 0.05) between regional myocardial perfusion and angiography. The correlation of histopathologic changes with normal, moderately, and severely reduced segmental 13N-ammonia uptake was 87%, 60%, and 75%, respectively. Segmental myocardial 18FDG uptake and histopathologic findings were concordant in 48 (79%) of 64 segments without fibrosis; absence of viability by perfusion and metabolism imaging correlated with the presence of fibrosis in 21 (84%) of 25 segments.ConclusionsThe observed agreements between the findings on PET perfusion and metabolism imaging with those on coronary angiography, echocardiography, and histopathology support the utility and accuracy of PET for characterizing myocardial perfusion abnormalities and viability in pediatric patients

    Initial experience of dedicated breast PET imaging of ER+ breast cancers using [F-18]fluoroestradiol.

    Get PDF
    Dedicated breast positron emission tomography (dbPET) is an emerging technology with high sensitivity and spatial resolution that enables detection of sub-centimeter lesions and depiction of intratumoral heterogeneity. In this study, we report our initial experience with dbPET using [F-18]fluoroestradiol (FES) in assessing ER+ primary breast cancers. Six patients with &gt;90% ER+ and HER2- breast cancers were imaged with dbPET and breast MRI. Two patients had ILC, three had IDC, and one had an unknown primary tumor. One ILC patient was treated with letrozole, and another patient with IDC was treated with neoadjuvant chemotherapy without endocrine treatment. In this small cohort, we observed FES uptake in ER+ primary breast tumors with specificity to ER demonstrated in a case with tamoxifen blockade. FES uptake in ILC had a diffused pattern compared to the distinct circumscribed pattern in IDC. In evaluating treatment response, the reduction of SUVmax was observed with residual disease in an ILC patient treated with letrozole, and an IDC patient treated with chemotherapy. Future study is critical to understand the change in FES SUVmax after endocrine therapy and to consider other tracer uptake metrics with SUVmax to describe ER-rich breast cancer. Limitations include variations of FES uptake in different ER+ breast cancer diseases and exclusion of posterior tissues and axillary regions. However, FES-dbPET has a high potential for clinical utility, especially in measuring response to neoadjuvant endocrine treatment. Further development to improve the field of view and studies with a larger cohort of ER+ breast cancer patients are warranted

    Melatonin atheroprotective effects in vivo

    Get PDF
    Chronic inflammatory fibro-proliferative changes leading to atherosclerotic plaques are considered hallmark of cardiovascular diseases [1]. Atherosclerosis pathogenesis is a complex entity, which has not been fully understood; however, many studies have demonstrated the role of oxidative stress and inflammation in its development. Melatonin effects on inflammation and oxidative stress process have been demonstrated in the last ten-year literature [2]. However, its role(s) and mechanism(s) of action as a therapeutic tool against atherosclerosis remain largely unexplored. Our aims were to assess the role of melatonin in the onset and developing of atherosclerotic plaques through radiologic and morphometrical tools in 20 apolipoprotein-E knockout (ApoE) mice fed with Western diet (42% calories from fat). 10/20 mice were treated with melatonin (10 mg/kg per os). 18F-FDG PET-CT is a widely used tool to assess inflammatory changes, even before macroscopic changes have taken place. Glucose metabolism is known to be higher in areas of inflammation due to an increased expression of GLUT transporters on the cell membranes both in animals and humans. Using this feature PET/CT is able to determinate metabolic cellular changes and therefore it can be used as biomarker of atherosclerosis. All mice were scanned both before starting melatonin treatment and at the end of the study. After the last scan mice were sacrificed and vascular remodeling, oxidative stress and inflammation at aortic arch level were evaluated. CT-corrected PET datasets were used for computation of SUVmax. Atherosclerotic vascular remodeling, oxidative stress and inflammation levels were significantly more conspicuous in the control cohort, compared to the treated mice (p≤0.05). 18F-FDG PET/CT did not show significant difference in SUVmax. In summary, also in vivo, melatonin may have a protective effect in the atherosclerotic pathogenesis. Flamma S.p.A.-Italy (www.flammagroup.com) provided with melatonin. Financial supports: Fondazione Cariplo e Regione Lombardia “New opportunities and ways towards ERC” (Project 2014-2256) and University of California - Radiology and Biomedical Imaging Nuclear Medicine Section

    The Incidence of Pulmonary Embolism and Associated FDG-PET Findings in IV Contrast-Enhanced PET/CT

    Full text link
    Rationale and objectivesMost fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography with computed tomography (PET/CT) studies are performed on cancer patients. These patients are at increased risk of pulmonary embolism (PE). In this retrospective review, we determined the rate of PE, and the prevalence of associated FDG-PET findings on intravenous (IV) contrast-enhanced PET/CT.Materials and methodsWe identified all PET/CT studies performed at our institution with a reported finding of PE between January 2005 and October 2012. The medical record was reviewed for symptoms, which were identified after the diagnosis of PE, and whether the patients received treatment. The prevalence of associated FDG-PET findings was determined.ResultsA total of 65 total cases of PE (of 182,72 total PET/CT examinations) were identified of which 59 were previously unknown. This gives an incidental PE (IPE) rate of 0.32%. Of the patients where sufficient clinical information was available, 34 of 36 (94%) were treated either with therapeutic anticoagulation or inferior vena cava filter, and 30 of 36 (83%) were asymptomatic in retrospect. Of the patients with IPE, we found nine (15.2%) with associated focal pulmonary artery hypermetabolism, three (5.1%) with hypermetabolic pulmonary infarction, and one with increased isolated right ventricular FDG uptake (1.7%). One case of chronic PE demonstrated a focal hypometabolic filling defect in a pulmonary artery on PET.ConclusionsWe found IPE in 0.32% of PET/CT scans. Focal pulmonary artery hypermetabolism or hypometabolism, and hypermetabolic pulmonary artery infarction with the "rim sign" were uncommonly associated with PE. These findings could raise the possibility of IPE in non-IV contrast-enhanced PET/CT studies

    Poster display IV experimental and instrumentation

    Get PDF
    corecore