3 research outputs found

    Demonstratortest av gassensor baserad pÄ tryckt organisk elektronik och jonledande papper

    No full text
    Researchers at Karlstad University have developed a method for making paper ion conducting. The reasearchers want to test this technique in various applications and produce products that make use of the ion-conducting paper. Hopefully this will drive the development forward and result in new applications for the ion-conducting paper. This study was to test the possibility of manufacturing a gas sensor of conducting paper along with electrodes of conductive polymers printed on the paper. By comparing the paper sensor with an electrochemical cell in which the electrodes of conductive polymer replaces electrodes of metal and ion-conductive paper replaces the liquid electrolyte in the electrochemical cell, it was hoped that it would be possible to measure the oxidation and reduction reactions that a gas could introduce at the electrodes. It was shown that it is possible to measure a potential difference in the range of 0.3 V to 0.5 V between the electrodes when exposing an electrode to 100% oxygen. The reaction that takes place is relatively slow and the reaction rate is partly due to the distance between the electrodes. Since the sensor can measure oxidation and reduction reactions it is possible that, in further development of a sensor, the sensor can be made ​​into a versatile sensor with more applications than gas measurement as there are many more ways to oxidize or reduce the electrodes than by exposure to oxygen. During the study there have been discussions and meetings held with various companies in the sensor industry to be able to specify what the market demands of a sensor made ​​of paper and the requirements that must be placed on the sensor for it to be interesting for the companies.PĂ„ Karlstads universitet har forskare tagit fram en metod för att göra papper jonledande. Denna teknik vill forskarna testa att anvĂ€nda i olika tillĂ€mpningar för att fĂ„ fram produkter som anvĂ€nder sig av det jonledande pappret pĂ„ marknaden och pĂ„ sĂ„ sĂ€tt Ă€ven driva utvecklingen framĂ„t. Förhoppningsvis kommer denna utveckling att leda till nya applikationer för det jonledande pappret. MĂ„let med detta arbete var att ta fram en demonstrator för en gassensor tillverkad av detta papper tillsammans med, pĂ„ pappret tryckta, elektroder i ledande polymerer. Genom att likna papperssensorn med en elektrokemisk cell dĂ€r elektroderna av ledande polymer ersatte elektroder i metall och jonpappret ersatte den flytande elektrolyten i den elektrokemiska cellen antogs det att det gick att mĂ€ta de oxidations- och reduktionsreaktioner som en gas skulle kunna introducera pĂ„ elektroderna. Det visade att det Ă€r möjligt att mĂ€ta upp en potentialskillnad i storleksordningen 0,3 – 0,5 V mellan elektroderna nĂ€r en elektrod exponeras för 100 % syrgas. Denna reaktion sker relativt lĂ„ngsamt och reaktionshastigheten beror bland annat pĂ„ avstĂ„ndet mellan elektroderna. Möjligheten att med sensorn mĂ€ta oxidations- och reduktionsreaktioner skulle kunna, genom vidare utveckling, göra sensorn till en mĂ„ngsidig sensor med fler applikationer Ă€n gasmĂ€tning dĂ„ det finns mĂ„nga fler sĂ€tt att oxidera eller reducera elektroderna Ă€n genom exponering för syrgas. Det har under arbetet förts samtal och hĂ„llits möten med olika företag inom sensorbranschen för att kunna specificera vad marknaden önskar av en sensor gjord av papper och vilka krav som mĂ„ste stĂ€llas pĂ„ sensorn för att den skall vara intressant för företagen

    Demonstratortest av gassensor baserad pÄ tryckt organisk elektronik och jonledande papper

    No full text
    Researchers at Karlstad University have developed a method for making paper ion conducting. The reasearchers want to test this technique in various applications and produce products that make use of the ion-conducting paper. Hopefully this will drive the development forward and result in new applications for the ion-conducting paper. This study was to test the possibility of manufacturing a gas sensor of conducting paper along with electrodes of conductive polymers printed on the paper. By comparing the paper sensor with an electrochemical cell in which the electrodes of conductive polymer replaces electrodes of metal and ion-conductive paper replaces the liquid electrolyte in the electrochemical cell, it was hoped that it would be possible to measure the oxidation and reduction reactions that a gas could introduce at the electrodes. It was shown that it is possible to measure a potential difference in the range of 0.3 V to 0.5 V between the electrodes when exposing an electrode to 100% oxygen. The reaction that takes place is relatively slow and the reaction rate is partly due to the distance between the electrodes. Since the sensor can measure oxidation and reduction reactions it is possible that, in further development of a sensor, the sensor can be made ​​into a versatile sensor with more applications than gas measurement as there are many more ways to oxidize or reduce the electrodes than by exposure to oxygen. During the study there have been discussions and meetings held with various companies in the sensor industry to be able to specify what the market demands of a sensor made ​​of paper and the requirements that must be placed on the sensor for it to be interesting for the companies.PĂ„ Karlstads universitet har forskare tagit fram en metod för att göra papper jonledande. Denna teknik vill forskarna testa att anvĂ€nda i olika tillĂ€mpningar för att fĂ„ fram produkter som anvĂ€nder sig av det jonledande pappret pĂ„ marknaden och pĂ„ sĂ„ sĂ€tt Ă€ven driva utvecklingen framĂ„t. Förhoppningsvis kommer denna utveckling att leda till nya applikationer för det jonledande pappret. MĂ„let med detta arbete var att ta fram en demonstrator för en gassensor tillverkad av detta papper tillsammans med, pĂ„ pappret tryckta, elektroder i ledande polymerer. Genom att likna papperssensorn med en elektrokemisk cell dĂ€r elektroderna av ledande polymer ersatte elektroder i metall och jonpappret ersatte den flytande elektrolyten i den elektrokemiska cellen antogs det att det gick att mĂ€ta de oxidations- och reduktionsreaktioner som en gas skulle kunna introducera pĂ„ elektroderna. Det visade att det Ă€r möjligt att mĂ€ta upp en potentialskillnad i storleksordningen 0,3 – 0,5 V mellan elektroderna nĂ€r en elektrod exponeras för 100 % syrgas. Denna reaktion sker relativt lĂ„ngsamt och reaktionshastigheten beror bland annat pĂ„ avstĂ„ndet mellan elektroderna. Möjligheten att med sensorn mĂ€ta oxidations- och reduktionsreaktioner skulle kunna, genom vidare utveckling, göra sensorn till en mĂ„ngsidig sensor med fler applikationer Ă€n gasmĂ€tning dĂ„ det finns mĂ„nga fler sĂ€tt att oxidera eller reducera elektroderna Ă€n genom exponering för syrgas. Det har under arbetet förts samtal och hĂ„llits möten med olika företag inom sensorbranschen för att kunna specificera vad marknaden önskar av en sensor gjord av papper och vilka krav som mĂ„ste stĂ€llas pĂ„ sensorn för att den skall vara intressant för företagen

    Internet-of-Things in Low Voltage Electricity Grids

    No full text
    When evaluating future technologies for smart metering and automatic meter reading (AMR) E.ON ElnĂ€t Sverige AB has set up a pilot to test a communication technology supplied by Connode AB. Connode have developed a mesh radio solution based on 6LoWPAN, IPv6 over Low Powered Wireless Personal Area Network. By using this technology the communication unit on every meter is acting as both receiver and sender of IPKbased communication packets. The meters are aware of the other meters around them and automatically set up the best way to send a message. If two meters do not have a direct communication path to each other the message will be relayed via other meters until it reaches its destination. These meters will create a wireless network that covers a large area of the E.ON test site Hyllie in Malmö. Connode has also developed a radio card that makes it possible to connect an embedded Linux platform, Intel Edsion, to the mesh network. By having this computer connected to the wireless network from the meters, this will enable a range of use cases within smart grid technologies taking advantage of using distributed computing in the low voltage grid. This thesis has investigated what use cases this technology can be used for. Some of the use cases defined were also implemented by developing two demonstration boxes. The demonstration boxes made it possible to implement the use cases without having an actual grid to test on. The demonstration boxes represent a facility and a substation. In each box there is an embedded computer with a mesh radio communication module. The embedded computer has all grid information via the I/O from the demonstration boxes to be used in the use cases. The use cases that were defined were among others, antiKislanding protection, prioritized automatic disconnection, substation controller and demand response controller. Of these the ones clearly implemented were the antiKislanding protection, prioritized automatic disconnection and the substation controller. The following was performed during the thesis. ‱ Interviewing E.ON employees ‱ Defining use cases ‱ Design of simulation platform for use cases ‱ Construction of simulation platform ‱ Development of software for simulation platform ‱ Evaluation of 6LoWPAN and Connode’s implementation for usage in smart grid applications. Using distributed computing in smart grid applications is clearly a very promising way to handle the future complexity of the modern grid. But it is still the communication technology that will be the crucial part of the solutions since some use cases will depend on high data throughput and transport integrity. This can somewhat be overcome by optimizing the architecture of such solutions but still for larger deployments the communication is the limiting factor. The Connode solution seems very promising, but there are a few issues that are in the way when planning to use the technology for a larger implementation of smart grid. It needs to be stressed that the Connode solution of connecting embedded computers is just for development use and not for production, but some other factors are still in the way. One major issue is the separate IP address that the computer gets that is separated for the meters IP addresses. This makes the solution server unaware of the computer and separate systems must be implemented to be able to use the computer in distributed intelligence architecture. It is also needed to implement all the security features that is already implemented in the metering solution, the embedded computers are not able to use the same features from the Connode server. Also it is not possible for the distributed computers to talk directly to the meters as they must go via the Connode server. At last it was seen that for many use cases a full embedded Linux distribution might be somewhat excessive.E.ON ElnĂ€t har i dagslĂ€get cirka en miljlon elmĂ€tare uppsatta runtom i Sverige. De mĂ€tare som sattes upp i förra utrullningen 2004-2009 börjar bli gamla och E.ON undersöker vilka kommunikationstekniker som nĂ€sta generations mĂ€tare bör ha. E.ON har börjat testa mĂ€tare med en kommunikationsmodul frĂ„n Connode AB. Denna modul möjliggör att kommunicera med mĂ€taren via Internet och dessutom göra det trĂ„dlöst via ett IP-baserat meshat (maskat) radionĂ€tverk. I ett mesh-nĂ€tverk Ă€r varje nod bĂ„de sĂ€ndare och mottagare sĂ„ nĂ€tet byggs upp allt eftersom man lĂ€gger till fler noder, i detta fallet elmĂ€tare. All kommunikation inom radion nĂ€tverket Ă€r en variant pĂ„ IP som passar för att skickas över enklare radio. Till skillnad pĂ„ vanligt WIFI som skickar standard IP och som ligger pĂ„ 2,4 GHz ligger denna radio pĂ„ 868 MHz vilket gör att den nĂ„r mycket lĂ€ngre Ă€n WIFI, men kan inte skicka lika mycket data. PĂ„ vissa punkter i nĂ€tverket mĂ„ste det placeras ut gateways. En gateway Ă€r kopplingen till det “vanliga” Internet. Dessa kan antingen sitta direkt i mĂ€taren genom att man lĂ€gger till möjligheten för uppkoppling till mobilnĂ€ten, eller en separat modul som kan kopplas in till bredband. Det meshade nĂ€tverkets fördelar Ă€r att om man vill kommunicera med en elmĂ€tare som Ă€r utom rĂ€ckhĂ„ll för gatewayen sĂ„ skickas meddelandena vidare via andra elmĂ€tare tills de kommer fram. ElmĂ€tarna sköter denna vidarebefodring av datan helt automatiskt och kontrollerar kontinuerligt vilka grannar de ser och kan kommunicera med och sĂ€tter upp bĂ€sta vĂ€gen till dessa grannar sĂ„ att nĂ€r ett meddelande kommer som inte Ă€r menat till just den elmĂ€taren, vet den vart den skall skicka det. Om E.ON sĂ€tter ut elmĂ€tare med denna tekniken kommer det finnas ett trĂ„dlöst nĂ€tverk att koppla in annan intressant utrustning pĂ„ i alla de stĂ€der och orter som E.ON har elnĂ€t i. I examensarbetet har det omrĂ„det Hyllie i Malmö anvĂ€nts dĂ„ det planeras att sĂ€ttas upp cirka 300 mĂ€tare för att testa kommunikationen pĂ„ större skala dĂ€r. Connode AB har tagit fram en prototyping-lösning för sin radiokommunikation som bygger pĂ„ en Intel Edison, en liten Linuxdator och en radiomodul frĂ„n Connode AB. Varje liten apparat skulle dĂ„ vara uppkopplad till Internet via radio och det Ă€r det som ocksĂ„ kallas Internet of Things (IoT). De anvĂ€ndningsomrĂ„den som undersöktes i examensarbetet var inom last-och produktionsstyrning, inkoppling av sensorer för att veta mer om lĂ„gspĂ€nningsnĂ€tverk samt skyddsfunktioner i elnĂ€tet. Till exempel att kunna styra laddning av mĂ„nga el-fordon sĂ„ att man inte överlastade en transformator eller att fördröja uppvĂ€rmingen av hus i ett omrĂ„de om det blev en kall natt genom att ta hĂ€nsyn till den vĂ€rme de redan hade i huset och pĂ„ sĂ„ sĂ€tt kunna göra lasten jĂ€mn pĂ„ transformatorn. Eftersom det inte fanns nĂ„gra mĂ€tare uppsatta och att det inte fanns nĂ„gra elnĂ€t dĂ€r metoderna kunder testas och visas konstruerades tvĂ„ simulatorlĂ„dor för att simulera en anlĂ€ggning och en nĂ€tstation. Utrustning i lĂ„dorna hade kommunikation till varandra genom radionĂ€tet som kom frĂ„n elmĂ€tarna i lĂ„dorna och demonstrerade att tilltĂ€nkta metoder fungerade
    corecore