904 research outputs found

    Circulation mapping of the North Atlantic Ocean during the 1990\u27s and from 1974 to 1984 as determined from the World Ocean Circulation Experiment (WOCE) Eulerian current meter moorings

    Get PDF
    The Study of the ocean presents many challenges due to its vast size and the difficulty in representing such a system with the availability of few data measurements. The World Ocean Circulation Experiment (WOCE) is the largest oceanographic experiment ever conducted. Data collection has been completed and we are now in the analysis, interpretation, modeling and synthesis phases (AIMS). An analysis and interpretation of the North Atlantic Ocean was conducted using a subset of the WOCE data. In the pre-WOCE period between Apr-11-74 and Sep-03-84 a total of 272 records were obtained having a spatial range of 23.2Ëš- 60.2ËšN and 9.2Ëš - 71.8ËšW. The WOCE dataset consisted of 653 records obtained between Mar-09-90 and Aug-19-99 and having a spatial range of 0.1Ëš - 65.3ËšN and 9.5Ëš - 76.8ËšW. Data rich areas included the eastern shore of North America, especially the Gulf Stream and its extension, and the west coast of Europe and the United Kingdom. Data poor areas were found predominately north of the equator between 5Ëš and 15ËšN. Shallow and intermediate depth water currents showed similar pathways between the two datasets, whereas deep water current meters did not. Near bottom flows showed the effect of bathymetry on deep water flows with acceleration of flow down the continental slope evident, this is due to a combination of slope and water density. Annual mean circulation was examined for the period 1991-1993 and revealed a steady sub-tropical gyre. Eastward movement of a large warm water core was evident in 1992, with a smaller warm water core moving northward in 1993. By combining vector plots, depth profiles, and flow statistics a more complete coverage of the ocean was established. A good representation of current flows at various depths was observed. Variability in the circulation revealed the formation of eddies, movement of deep water masses and a highly dynamic state of the ocean

    XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter

    Get PDF
    \ua9 The Author(s) 2024. Phosphate (Pi) is an essential nutrient, and its plasma levels are under tight hormonal control. Uphill transport of Pi into cells is mediated by the two Na-dependent Pi transporter families SLC34 and SLC20. The molecular identity of a potential Pi export pathway is controversial, though XPR1 has recently been suggested by Giovannini and coworkers to mediate Pi export. We expressed XPR1 in Xenopus oocytes to determine its functional characteristics. Xenopus isoforms of proteins were used to avoid species incompatibility. Protein tagging confirmed the localization of XPR1 at the plasma membrane. Efflux experiments, however, failed to detect translocation of Pi attributable to XPR1. We tested various counter ions and export medium compositions (pH, plasma) as well as potential protein co-factors that could stimulate the activity of XPR1, though without success. Expression of truncated XPR1 constructs and individual domains of XPR1 (SPX, transmembrane core, C-terminus) demonstrated downregulation of the uptake of Pi mediated by the C-terminal domain of XPR1. Tethering the C-terminus to the transmembrane core changed the kinetics of the inhibition and the presence of the SPX domain blunted the inhibitory effect. Our observations suggest a regulatory role of XPR1 in cellular Pi handling rather than a function as Pi exporter. Accordingly, XPR1 senses intracellular Pi levels via its SPX domain and downregulates cellular Pi uptake via the C-terminal domain. The molecular identity of a potential Pi export protein remains therefore elusive

    What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma?

    Get PDF
    Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma

    Antimicrobial resistance- and pathogen patterns in the fecal microbiota of sows and their offspring in German commercial pig farms

    Get PDF
    Reducing antibiotic use is one of the biggest challenges in pig farming, as antibiotics have been used for years to control typical problems such as newborn or post-weaning diarrhea. The pressure a one health approach has created on animal production regarding antimicrobial resistance is an opportunity to find other strategies against enterobacterial pathogens in suckling and weaned piglets. A farm-specific approach could have a good success due to the individual farm structures in Germany and other countries. In this study, non-metric multidimensional scaling, hierarchical clustering, and latent class analysis were used to determine the impact of antibiotic use on antibiotic resistance patterns and pathogen prevalence in 20 German pig farms. This may help to develop individualized health strategies. 802 fresh fecal samples were collected from sows and piglets from 20 piglet production and rearing farms at different production times (sows antepartum and postpartum, suckling piglets, weaned piglets). In addition, the use of antibiotics was recorded. DNA extracts were subjected to quantitative real-time qPCR with primers specific for antibiotic resistance genes (int1, sul1-3, dfrA1, mcr-1, blaCTX-M), and virulence factors of relevant bacteria (C. difficile, C. perfringens, Salmonella, Escherichia/Shigella/Hafnia, E. coli). Linear and logistic regression models were used to analyze the relationship between different antibiotics and the major genes contributing to the clustering of observations for the different animal groups. Clustering revealed different farm clusters for sows, suckling piglets, and weaned piglets, with the most remarkable diversity in antibiotic use among weaned piglets. Amoxicillin, lincomycin, and enrofloxacin were identified as the most probable cause of increased odds of the presence of relevant antibiotic resistance genes (mcr1, dfrA1, blaCTX-M). Still, direct effects of a specific antibiotic on its associated resistance gene were rare. Enrofloxacin and florfenicol favored the occurrence of C. difficile in sows. The E. coli fimbriae genes were less affected by antibiotic use in sows and piglets, but the F4 fimbriae gene could be associated with the integrase 1 gene in piglets. The results confirm that multidrug-resistant enterobacteria are widespread in German pig farms and give awareness of the impact of current antibiotic use while searching for alternative health strategies

    MicroRNAs as potential biomarkers in pituitary adenomas

    Get PDF
    Pituitary adenomas (PAs) are one of the most common lesions of intracranial neoplasms, occurring in approximately 15% of the general population. They are typically benign, although some adenomas show aggressive behavior, exhibiting rapid growth, drug resistance, and invasion of surrounding tissues. Despite ongoing improvements in diagnostic and therapeutic strategies, late first diagnosis is common, and patients with PAs are prone to relapse. Therefore, earlier diagnosis and prevention of recurrence are of importance to improve patient care. MicroRNAs (miRNAs) are short non-coding single stranded RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies indicate that a deregulation of their expression patterns is related with pituitary tumorigenesis, suggesting that these small molecules could play a critical role in contributing to tumorigenesis and the onset of these tumors by acting either as oncosuppressors or as oncogenes, depending on the biological context. This paper provides an overview of miRNAs involved in PA tumorigenesis, which might serve as novel potential diagnostic and prognostic non-invasive biomarkers, and for the future development of miRNA-based therapeutic strategies for PAs

    Are non-coding rnas useful biomarkers in parathyroid tumorigenesis?

    Get PDF
    Tumors of the parathyroid glands are common endocrine diseases almost always characterized by parathyroid hormone hypersecretion that determines the clinical manifestations of primary hyperparathyroidism, such as fatigue, kidney problems, weakness, brittle bones, and other symptoms. Most parathyroid neoplasia are benign adenomas, although rare malignant forms have been described. They are heterogeneous in terms of clinical presentation and the associated signs and symptoms overlap with those of disease and aging. Furthermore, most patients with hypercalcemia are discovered during routine blood tests for other reasons. Surgical removal is considered the main therapeutic option to cure these endocrine tumors and, therefore, innovative therapeutic approaches are actively required. Recently, a growing number of studies have suggested that alterations to the epigenetic mechanisms could play a pivotal role in parathyroid tumorigenesis. Most of the attention has been focused on non-coding RNAs (ncRNAs) (i.e., miRNAs, lncRNAs, and circRNAs) whose expression profile has been found to be deregulated in parathyroid tumors. The aim of the present paper is to give an insight into the ncRNAs involved in parathyroid tumorigenesis, which could be used in the future either as innovative diagnostic biomarkers or as therapeutic targets for the treatment of this endocrine neoplasia

    Rapid nontranscriptional effects of calcifediol and calcitriol

    Get PDF
    Classically, a secosteroid hormone, vitamin D, has been implicated in calcium and phosphate homeostasis and has been associated with the pathogenesis of rickets and osteomalacia in patients with severe nutritional vitamin D deficiency. The spectrum of known vitamin D-mediated effects has been expanded in recent years. However, the mechanisms of how exactly this hormone elicits its biological function are still not fully understood. The interaction of this metabolite with the vitamin D receptor (VDR) and, subsequently, with the vitamin D-responsive element in the region of specific target genes leading to the transcription of genes whose protein products are involved in the traditional function of calcitriol (known as genomic actions). Moreover, in addition to these transcription-dependent mechanisms, it has been recognized that the biologically active form of vitamin D(3), as well as its immediate precursor metabolite, calcifediol, initiate rapid, non-genomic actions through the membrane receptors that are bound as described for other steroid hormones. So far, among the best candidates responsible for mediating rapid membrane response to vitamin D metabolites are membrane-associated VDR (VDRm) and protein disulfide isomerase family A member 3 (Pdia3). The purpose of this paper is to provide an overview of the rapid, non-genomic effects of calcifediol and calcitriol, whose elucidation could improve the understanding of the vitamin D(3) endocrine system. This will contribute to a better recognition of the physiological acute functions of vitamin D(3), and it could lead to the identification of novel therapeutic targets able to modulate these actions

    Hypoparathyroidism: State of the art on cell and tissue therapies

    Get PDF
    Hypoparathyroidism is an endocrine disorder characterized by low serum calcium levels, high serum phosphorus levels, and by inappropriate or absent secretion of the parathyroid hormone (PTH). The most common therapeutic strategy to treat this condition is hormone replacement therapy with calcium and vitamin D but, unfortunately, in the long term this treatment may not be sufficient to compensate for the loss of endocrine function. Glandular autotransplantation is considered the most effective technique in place of replacement therapy. Although it leads to excellent results in most cases, autotransplantation is not always possible. Allograft is a good way to treat patients who have not been able to undergo autograft, but this technique has limited success due to side effects related to tissue rejection. This therapy is supported by systemic immunosuppression, which leads to the onset of serious side effects in patients, with a risk of endocrine toxicity. Today, research on endocrine disorders is focused on discovering alternative graft therapies that can allow optimal results with the fewest possible side effects. In this review, we will make an update on the current state of the art about the cell and tissue therapy as treatment for hypoparathyroidism, to identify which type of therapeutic strategy could be valid for a future clinical use
    • …
    corecore