1,566 research outputs found

    Type 2 Diabetes, Metabolic traits and Risk of Heart Failure:a Mendelian Randomization study

    Get PDF
    OBJECTIVE: The aim of this study was to use Mendelian randomization (MR) techniques to estimate the causal relationships between genetic liability to type 2 diabetes (T2D), glycemic traits, and risk of heart failure (HF). RESEARCH DESIGN AND METHODS: Summary-level data were obtained from genome-wide association studies of T2D, insulin resistance (IR), glycated hemoglobin, fasting insulin and glucose, and HF. MR was conducted using the inverse-variance weighted method. Sensitivity analyses included the MR-Egger method, weighted median and mode methods, and multivariable MR conditioning on potential mediators. RESULTS: Genetic liability to T2D was causally related to higher risk of HF (odds ratio [OR] 1.13 per 1-log unit higher risk of T2D; 95% CI 1.11-1.14; P < 0.001); however, sensitivity analysis revealed evidence of directional pleiotropy. The relationship between T2D and HF was attenuated when adjusted for coronary disease, BMI, LDL cholesterol, and blood pressure in multivariable MR. Genetically instrumented higher IR was associated with higher risk of HF (OR 1.19 per 1-log unit higher risk of IR; 95% CI 1.00-1.41; P = 0.041). There were no notable associations identified between fasting insulin, glucose, or glycated hemoglobin and risk of HF. Genetic liability to HF was causally linked to higher risk of T2D (OR 1.49; 95% CI 1.01-2.19; P = 0.042), although again with evidence of pleiotropy. CONCLUSIONS: These findings suggest a possible causal role of T2D and IR in HF etiology, although the presence of both bidirectional effects and directional pleiotropy highlights potential sources of bias that must be considered

    Type 2 Diabetes, Metabolic Traits, and Risk of Heart Failure: A Mendelian Randomization Study

    Get PDF
    OBJECTIVE: The aim of this study was to use Mendelian randomization (MR) techniques to estimate the causal relationships between genetic liability to type 2 diabetes (T2D), glycemic traits, and risk of heart failure (HF). RESEARCH DESIGN AND METHODS: Summary-level data were obtained from genome-wide association studies of T2D, insulin resistance (IR), glycated hemoglobin, fasting insulin and glucose, and HF. MR was conducted using the inverse-variance weighted method. Sensitivity analyses included the MR-Egger method, weighted median and mode methods, and multivariable MR conditioning on potential mediators. RESULTS: Genetic liability to T2D was causally related to higher risk of HF (odds ratio [OR] 1.13 per 1-log unit higher risk of T2D; 95% CI 1.11-1.14; P < 0.001); however, sensitivity analysis revealed evidence of directional pleiotropy. The relationship between T2D and HF was attenuated when adjusted for coronary disease, BMI, LDL cholesterol, and blood pressure in multivariable MR. Genetically instrumented higher IR was associated with higher risk of HF (OR 1.19 per 1-log unit higher risk of IR; 95% CI 1.00-1.41; P = 0.041). There were no notable associations identified between fasting insulin, glucose, or glycated hemoglobin and risk of HF. Genetic liability to HF was causally linked to higher risk of T2D (OR 1.49; 95% CI 1.01-2.19; P = 0.042), although again with evidence of pleiotropy. CONCLUSIONS: These findings suggest a possible causal role of T2D and IR in HF etiology, although the presence of both bidirectional effects and directional pleiotropy highlights potential sources of bias that must be considered

    Phosphodiesterase type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension is a proliferative vascular disease, characterized by aberrant regulation of smooth muscle cell proliferation and apoptosis in distal pulmonary arteries. Prostacyclin (PGI(2)) analogues have anti-proliferative effects on distal human pulmonary artery smooth muscle cells (PASMCs), which are dependent on intracellular cAMP stimulation. We therefore sought to investigate the involvement of the main cAMP-specific enzymes, phosphodiesterase type 4 (PDE4), responsible for cAMP hydrolysis. METHODS: Distal human PASMCs were derived from pulmonary arteries by explant culture (n = 14, passage 3–12). Responses to platelet-derived growth factor-BB (5–10 ng/ml), serum, PGI(2 )analogues (cicaprost, iloprost) and PDE4 inhibitors (roflumilast, rolipram, cilomilast) were determined by measuring cAMP phosphodiesterase activity, intracellular cAMP levels, DNA synthesis, apoptosis (as measured by DNA fragmentation and nuclear condensation) and matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) production. RESULTS: Expression of all four PDE4A-D genes was detected in PASMC isolates. PDE4 contributed to the main proportion (35.9 ± 2.3%, n = 5) of cAMP-specific hydrolytic activity demonstrated in PASMCs, compared to PDE3 (21.5 ± 2.5%), PDE2 (15.8 ± 3.4%) or PDE1 activity (14.5 ± 4.2%). Intracellular cAMP levels were increased by PGI(2 )analogues and further elevated in cells co-treated with roflumilast, rolipram and cilomilast. DNA synthesis was attenuated by 1 μM roflumilast (49 ± 6% inhibition), rolipram (37 ± 6%) and cilomilast (30 ± 4%) and, in the presence of 5 nM cicaprost, these compounds exhibited EC(50 )values of 4.4 (2.6–6.1) nM (Mean and 95% confidence interval), 59 (36–83) nM and 97 (66–130) nM respectively. Roflumilast attenuated cell proliferation and gelatinase (MMP-2 and MMP-9) production and promoted the anti-proliferative effects of PGI(2 )analogues. The cAMP activators iloprost and forskolin also induced apoptosis, whereas roflumilast had no significant effect. CONCLUSION: PDE4 enzymes are expressed in distal human PASMCs and the effects of cAMP-stimulating agents on DNA synthesis, proliferation and MMP production is dependent, at least in part, on PDE4 activity. PDE4 inhibition may provide greater control of cAMP-mediated anti-proliferative effects in human PASMCs and therefore could prove useful as an additional therapy for pulmonary arterial hypertension

    Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965.

    Full text link
    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the 'Anthropocene'. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon (14C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14C, demonstrating the 'bomb peak' in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II 'Great Acceleration' in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or 'golden spike', marking the onset of the Anthropocene Epoch

    Organic matter control on the distribution of arsenic in lake sediments impacted by ~ 65 years of gold ore processing in subarctic Canada

    Get PDF
    Climate change is profoundly affecting seasonality, biological productivity, and hydrology in high northern latitudes. In sensitive subarctic environments exploitation of mineral resources led to contamination and it is not known how cumulative effects of resource extraction and climate warming will impact ecosystems. Gold mines near Yellowknife, Northwest Territories, subarctic Canada, operated from 1938 to 2004 and released > 20,000 t of arsenic trioxide (As2O3) to the environment through stack emissions. This release resulted in elevated arsenic concentrations in lake surface waters and sediments relative to Canadian drinking water standards and guidelines for the protection of aquatic life. A meta-analytical approach is used to better understand controls on As distribution in lake sediments within a 30-km radius of historic mineral processing activities. Arsenic concentrations in the near-surface sediments range from 5 mg·kg− 1 to over 10,000 mg·kg− 1 (median 81 mg·kg− 1; n = 105). Distance and direction from the historic roaster stack are significantly (p < 0.05) related to sedimentary As concentration, with highest As concentrations in sediments within 11 km and lakes located downwind. Synchrotron-based μXRF and μXRD confirm the persistence of As2O3 in near surface sediments of two lakes. Labile organic matter (S1) is significantly (p < 0.05) related to As and S concentrations in sediments and this relationship is greatest in lakes within 11 km from the mine. These relations are interpreted to reflect labile organic matter acting as a substrate for microbial growth and mediation of authigenic precipitation of As-sulphides in lakes close to the historic mine where As concentrations are highest. Continued climate warming is expected to lead to increased biological productivity and changes in organic geochemistry of lake sediments that are likely to play an important role in the mobility and fate of As in aquatic ecosystems

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial.

    Full text link
    Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14C and 10Be records, the authors show that Southern Ocean freshwater hosing can trigger global change

    Semi-automatic conversion of BioProp semantic annotation to PASBio annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic role labeling (SRL) is an important text analysis technique. In SRL, sentences are represented by one or more predicate-argument structures (PAS). Each PAS is composed of a predicate (verb) and several arguments (noun phrases, adverbial phrases, etc.) with different semantic roles, including main arguments (agent or patient) as well as adjunct arguments (time, manner, or location). PropBank is the most widely used PAS corpus and annotation format in the newswire domain. In the biomedical field, however, more detailed and restrictive PAS annotation formats such as PASBio are popular. Unfortunately, due to the lack of an annotated PASBio corpus, no publicly available machine-learning (ML) based SRL systems based on PASBio have been developed. In previous work, we constructed a biomedical corpus based on the PropBank standard called BioProp, on which we developed an ML-based SRL system, BIOSMILE. In this paper, we aim to build a system to convert BIOSMILE's BioProp annotation output to PASBio annotation. Our system consists of BIOSMILE in combination with a BioProp-PASBio rule-based converter, and an additional semi-automatic rule generator.</p> <p>Results</p> <p>Our first experiment evaluated our rule-based converter's performance independently from BIOSMILE performance. The converter achieved an F-score of 85.29%. The second experiment evaluated combined system (BIOSMILE + rule-based converter). The system achieved an F-score of 69.08% for PASBio's 29 verbs.</p> <p>Conclusion</p> <p>Our approach allows PAS conversion between BioProp and PASBio annotation using BIOSMILE alongside our newly developed semi-automatic rule generator and rule-based converter. Our system can match the performance of other state-of-the-art domain-specific ML-based SRL systems and can be easily customized for PASBio application development.</p

    Basal cytokines profile in metastatic renal cell carcinoma patients treated with subcutaneous IL-2-based therapy compared with that of healthy donors

    Get PDF
    <p>Abstract</p> <p>Background and purpose</p> <p>Metastatic renal cell carcinoma (MRCC) has a poor prognosis with a median overall survival of about one year. Since only a minority of patients experienced therapeutic benefit to current treatments, several studies have attempted to identify factors that may have an impact on response and survival. Cytokines play a crucial role in the host's immune response by regulating the development and function of a lot of biological compartments. Nevertheless, available data on basal cytokine levels in MRCC are very few and no clear profile of serum cytokines has been identified yet in these patients population. Thus, determining the levels of cytokines in MRCC could not only help in understanding the biological mechanisms of the tumor growth, but also in evaluating if different cytokine profiles are correlated with particular clinical behaviors.</p> <p>Materials and methods</p> <p>In 144 healthy donors and 55 MRCC treated with subcutaneous IL-2-based regimens, we analysed a panel of basal cytokines particularly involved in the neoplastic progression (IL-1beta, IL-6, IL-8, IL-10, IL-12, alpha-TNF) and C-reactive protein (CRP) in order to compare their levels in the two groups, and to verify their impact on patient response and survival.</p> <p>We first compared cytokines levels in patients population and healthy donors. Than, in definite patients group, univariate and multivariate analyses were performed to evaluate the correlation existing between each factor considered and clinical outcomes. For these analyses, baseline values were included as dichotomous variables using the median values (above and below) of control group.</p> <p>Results</p> <p>In general, higher levels of cytokines were found in patients with respect to those of healthy donors, both in term of percentage of undetectable levels or median values. The impact on response was insignificant, except for higher levels of CRP that were strongly correlated with a worse response (p < 0.001). Within the patients groups, a worse survival was associated with higher values of CRP (8 vs 31 months, p = 0.0000), IL-6 (9 vs 25 months, p = 0.0295), and IL-8 (9 vs 17 months, p = 0.0371). Conversely, higher levels of IL-12 were associated with a better survival (25 vs 15 months, months p = 0.0882). A correlation was found between CRP and IL-6 (p = 0.009) and between CRP and IL-10 (p = 0.038). After multivariate analysis only CRP (p = 0.0035) and IL-12 (p = 0.0371) maintained an independent impact on survival, while IL-6 showed a borderline value (p = 0.0792).</p> <p>Conclusion</p> <p>Higher cytokines levels characterize patients population with respect to healthy donors. Moreover, higher basal level of some immunosuppressive cytokines (CRP, IL-6, IL-8) result correlated with a poorer survival, whereas higher levels of IL-12, a cytokine with a potent antineoplastic activity, was associated with a better survival. A wider sample of patients is needed to better clarify if our findings are intrinsically related to patients population or if they are simply an epiphenomenon of disease progression.</p
    • …
    corecore