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Abstract 1 

Climate change is profoundly affecting seasonality, biological productivity, and hydrology in high 2 

northern latitudes. In sensitive subarctic environments exploitation of mineral resources led to 3 

contamination and it is not known how cumulative effects of resource extraction and climate 4 

warming will impact ecosystems. Gold mines near Yellowknife, Northwest Territories, subarctic 5 

Canada, operated from 1938 to 2004 and released more than 20,000 tonnes of arsenic trioxide 6 

(As2O3) to the environment through stack emissions. This release resulted in elevated arsenic 7 

concentrations in lake surface waters and sediments relative to Canadian drinking water standards 8 

and guidelines for the protection of aquatic life. A meta-analytical approach is used to better 9 

understand controls on As distribution in lake sediments within a 30-km radius of historic mineral 10 

processing activities. Arsenic concentrations in the near-surface sediments range from 5 mg.kg-1 11 

to over 10,000 mg.kg-1 (median 81 mg.kg-1; 5->10,000 mg.kg-1; n=105). Distance and direction 12 

from the historic roaster stack are significantly (p<0.05) related to sedimentary As concentration, 13 

with highest As concentrations in sediments within 11 km and lakes located downwind. 14 

Synchrotron-based µXRF and µXRD confirm the persistence of As2O3 in near surface sediments 15 

of two lakes. Labile organic matter (S1) is significantly (p<0.05) related to As and S concentrations 16 

in sediments and this relationship is greatest in lakes within 11 km from the mine. These relations 17 

are interpreted to reflect labile organic matter acting as a substrate for microbial growth and 18 

mediation of authigenic precipitation of As-sulphides in lakes close to the historic mine where As 19 

concentrations are highest. Continued climate warming is expected to lead to increased biological 20 

productivity and changes in organic geochemistry of lake sediments that are likely to play an 21 

important role in the mobility and fate of As in aquatic ecosystems.  22 

 23 

 24 
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 27 

1.0 Introduction 28 

 29 

Lakes and wetlands play an important role in the storage and mobilization of arsenic (As) 30 

(La Force et al., 2000; Gurung et al., 2005; MacDonald et al., 2005; Du Laing et al., 2009). The 31 

mobility and bioavailability of As in the environment is strongly controlled by Fe and Mn oxides 32 

and (oxy)hydroxides, sulphides, and organic matter (OM) (La Force et al., 2000; Du Laing et al., 33 

2009;  Langner et al., 2012). Interactions between As and these solid phases are in turn mediated 34 

by pH and redox conditions (Smedley and Kinniburgh, 2000; Du Laing et al., 2009). Redox 35 

conditions in lacustrine settings are influenced by basin morphometry, temperature, OM 36 

production and decomposition, and microbial-mediated redox processes within the sediment 37 

column (Toevs et al., 2006). Twentieth and twenty-first century global warming has, and is 38 

predicted to, result in profound changes to the biogeochemical environment in high northern 39 

latitudes through changing hydrology, permafrost, and the length of the ice free season 40 

(MacDonald et al., 2005; Spence et al., 2015). These changes may result in increased biological 41 

productivity and OM transport to aquatic environments and influence loading, cycling, and 42 

stability of metal(loids) (Schindler et al., 1997; Hejzlar et al., 2003; Vonk et al., 2013). The 43 

complexity of potential biogeochemical interactions warrants detailed evaluation of the interaction 44 

between As and OM in lacustrine settings. Organic matter is a heterogeneous mixture of organic 45 

compounds with varying structural and functional properties that influence reactivity in natural 46 

environments (Gu et al., 1995; Chen et al., 2002, 2003). These compounds are redox reactive and 47 

can mediate the release and redox transformation of solid-phase As(V) at depth in the sediment 48 
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column to As(III ), which can diffuse upward to be released to overlying waters or re-precipitate in 49 

oxic sediments (Lovley et al., 1996; Redman et al., 2002; van Geen et al., 2004) and result in 50 

substantial surface sediment enrichment of As (Martin and Pedersen, 2002). Interactions between 51 

As and OM also include competitive adsorption (Grafe et al., 2001; Redman et al., 2002), 52 

stabilization and physical coating of As-bearing colloids (Neubauer et al., 2013), OM and 53 

dissolved OM-Fe complexation with As (Langner et al., 2012, 2014) and carbon-limited microbial-54 

mediated precipitation of As-bearing minerals (Kirk et al., 2004). Dissolved OM (e.g., OM<0.45 55 

or 0.22 µm) plays a critical role in controlling As mobility in soils (Kalbitz and Wennrich, 1998; 56 

Grafe et al., 2001; Redman et al., 2002; Arai et al., 2006; Dobran and Zagury, 2006), aquifer 57 

sediments (Lawson et al., 2016),  and stream and wetland sediments (La Force et al., 2000; 58 

Beauchemim et al., 2006; Langner et al., 2012, 2014; Al-Sid-Cheikh et al., 2015) but 59 

comparatively little is known about the role of kerogen (sedimentary OM>0.45 or 0.22 µm that is 60 

solvent-insoluble; Durand, 1980) in element mobility in general (Langner et al., 2012) and in lake 61 

sediments in particular (Sanei and Goodarzi, 2006).  62 

The Yellowknife region in subarctic Northwest Territories, Canada, contains geogenic As 63 

from hydrothermal gold mineralization in Yellowknife Supergroup rocks and anthropogenic As 64 

from historic gold ore processing activities that resulted in a release of over 20,000 tonnes of 65 

arsenic trioxide (As2O3) to the environment (Suppl. 1; Hocking et al., 1978). Historical release of 66 

As2O3 caused elevated concentrations of As in lake waters and sediments within ~20 km of the 67 

largest historic mine in the area relative to lakes outside of this range (Galloway et al., 2015; 68 

Palmer et al., 2015; Houben et al., 2016). To provide insight into the physical and chemical 69 

parameters affecting the mobility of As and to better understand the cumulative effects of past 70 

anthropogenic activities and current and forecasted climate change possible physical (distance and 71 

direction from historic mining activity, lake connectivity, lake order, lake size) and chemical 72 
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(organic matter, other elements) controls on the distribution of As in lake sediments within a 30 73 

km radius of a historic mine roaster stack are assessed.  74 

 75 

2.0 Study area 76 

 77 

The City of Yellowknife and surrounding area is located in the southwestern Slave 78 

Geological Province, District of Mackenzie (Fig. 1). Elevation in the region rises gradually from 79 

157 m above sea level (MASL) near Great Slave Lake to approximately 400 MASL north of 63° 80 

latitude. The Yellowknife River is the main drainage for the area and its southern outlet flows into 81 

Yellowknife Bay, Great Slave Lake. Many lakes east of Yellowknife lie within the Cameron River-82 

Prelude Lake watershed. The study area lies south of the treeline and spans the Great Slave Lake 83 

Lowland and Great Slave Lake Upland ecoregions of the Taiga Shield Ecozone (Ecosystem 84 

Classification Group, 2007). The climate has a mean summer temperature of 11°C and a mean 85 

winter temperature of -21.5°C (mean annual temperature ranges from -3.5 to -9 °C). Mean annual 86 

precipitation ranges between 200 and 375 mm. Vegetation is composed of a mosaic of closed 87 

stands of trembling aspen, balsam poplar, paper birch, jack pine, and white and black spruce Poorly 88 

drained fens and bogs are common and often covered with open stands of larch and black spruce.  89 

Detailed information on the main bedrock elements of the Slave Geological Province and 90 

their structural evolution are summarized in Villeneuve et al. (1997), Villeneuve and Relf (1998), 91 

Yamashita and Creaser (1999), Yamashita et al. (1999), Bleeker and Davis (1999), Cousens 92 

(2000), Kjarsgaard et al. (2002), and Cousens et al. (2002). Major gold deposits of the area are 93 

hosted in Yellowknife Supergroup rocks dominated by 2.71-2.65 Ga mafic meta-volcanics that 94 

trend north-south. East of the City of Yellowknife Archean meta-sedimentary rocks dominate and 95 
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consist of greywacke, slate, schist, and phyllite. West of Yellowknife, granitoid intrusions, 96 

consisting of granite, granodiorite, and tonalite, compose the majority of the bedrock. The region 97 

is crosscut by early Proterozoic diabase and gabbro dykes and several major faults, such as the 98 

Kam Lake Fault and the West Bay Fault that run through the City of Yellowknife, separating the 99 

volcanic rocks from younger granitoids (Yamashita and Creaser, 1999; Yamashita et al., 1999; 100 

Cousens, 2000; Cousens et al., 2002). Arsenic concentrations in local bedrock are comparable to 101 

global crustal averages for granitoid, meta-sedimentary, and basic and ultrabasic igneous rocks 102 

(Turekian and Wedepohl, 1961; Koljonen, 1992; Smedley and Kinniburgh, 2002); ranging from 103 

~2 mg.kg-1 for granitoids to 33 mg.kg-1 in meta-volcanics and up to 90 mg.kg-1 in mineralized rocks 104 

(Boyle, 1960; Yamashita and Creaser, 1999; Yamashita et al., 1999; Cousens, 2000; Cousens et 105 

al., 2002; Ootes, 2004; Ootes et al., 2006; Kerr and Wilson, 2006). The surficial geology of the 106 

Yellowknife region is dominated by a mosaic of Glacial Lake McConnell sediments and glacial 107 

tills that infill the topographic lows of the abundant bedrock outcrops (Dyke and Prest, 1987; 108 

Smith, 1994; Kerr and Wilson, 2000; Wolfe et al., 2014). Accumulations of Holocene-aged peat 109 

also occur in the study area (Kerr and Wilson, 2000). Tills in the Yellowknife region can contain 110 

As concentrations up to 1560 mg.kg-1 within in situ weathered material over mineralized zones, 111 

although typically As concentrations are between 5 to 30 mg.kg-1 (Kerr, 2006). The As 112 

concentrations in glaciofluvial, glaciolacustrine, and peat deposits in the region are not published.  113 

 114 

3.0 Methods 115 

 116 

To assess the spatial distribution of arsenic in near-surface lake sediments in the Yellowknife 117 

area 105 near-surface sediment samples were collected from 100 lakes within a 30 km radius of 118 
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Yellowknife (Fig. 1). Sites were accessed during summer and fall between 2009 and 2014 by canoe 119 

and helicopter. To test the influence of physical and hydrological properties of the lakes on near-120 

surface sediment geochemistry, sampled lakes span a range of sizes and connectivity (Suppl. 2). 121 

Lake area and order were calculated using the digital 1:50,000 National Topographic Database 122 

(NTDB) in ArcMap (v.10). Lake connectivity was assessed using a combination of the 1:50,000 123 

NTDB, Google EarthTM, and field observations. Sixty-eight lakes occur in catchments 124 

predominantly underlain by granitoid bedrock, the majority of which belong to the Defeat Plutonic 125 

Suite undifferentiated granitoids that occur W and SE of the City of Yellowknife. Twenty-nine 126 

lakes occur on metasedimentary bedrock of the Burwash Formation that lies west of Yellowknife, 127 

and 8 lakes occur on volcanic bedrock (Suppl. 2).  128 

Near-surface sediment samples were collected using an Ekman Grab sampler. The top 2 to 129 

5 cm of sediment was sub-sampled for analyses. Samples were kept cool in the field and during 130 

shipping to Carleton University where they were kept cold at 4 °C until analyses. Surface water 131 

chemistry of 98 of the lakes sampled are published in Palmer et al. (2015). 132 

  133 

3.1 Sediment textural, organic, and elemental geochemical characterization 134 

 135 

Sedimentary grain size was determined using a Beckman Coulter LS 13 320 laser 136 

diffraction particle size analyzer fitted with a universal liquid module and a measurement range 137 

between 0.37 and 2000 ȝm. Hydrogen peroxide (30%) was added to sub-samples in an 80 oC water 138 

bath to oxidize organic matter prior to analysis (Murray, 2002; van Hengstum et al., 2007). The 139 

samples were loaded into the instrument until an obscuration level of 10 ± 3% was attained. 140 

Summary statistics were compiled using GRADISTAT (Version 8; Blott and Pye, 2001). Two 141 

reference materials were used: an accuracy standard provided by Beckman Coulter (Garnet15: 142 
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mean diameter 15 µm) run once per month and an in-house mud sample (Cushendun Mud) as a 143 

precision control run at the beginning of every session.  144 

Rock-Eval® 6 pyrolysis was used to analyze organic constituents of the sediments (Vinci 145 

Technologies, Rueil-Malmaison, France; Lafargue et al., 1998). The Rock-Eval® 6 instrument 146 

pyrolyses organic matter under an inert (N2) atmosphere and oxidizes organic matter by 147 

programmed temperature heating of bulk sediments (~20 mg; heating rate of 25 °C/min). Rock-148 

Eval® 6 pyrolysis measures the quantity of labile, readily degradable hydrocarbon devolatilized 149 

at 300 °C (S1, mg hydrocarbon/g), the hydrogen-rich, higher molecular weight kerogen-derived 150 

hydrocarbon released by thermal cracking of organic matter at 650 °C (S2, mg hydrocarbon/g), 151 

the amount of carbon dioxide released during pyrolysis of kerogen (S3, mg hydrocarbon/g), and 152 

refractory, residual carbon (RC wt. %) measured by automated transferal to an oxidation oven and 153 

heated from 400 °C to 850 °C. Total Organic Carbon (TOC; wt.%) represents the quantity of all 154 

organic matter released during pyrolysis and oxidation heating. S1, S2, and S3 were converted to 155 

weight % by multiplying by 0.083 (Sanei and Goodarzi, 2006). Analyses of standard reference 156 

materials (IFP 160000, Institut Français du Pétrole and internal 9107 shale standard, Geological 157 

Survey of Canada, Calgary; Ardakani et al., 2016) was run every 5th sample and shows accuracy 158 

and precision to be better than 5% relative standard deviation.  159 

In near-surface sediments, the S1 fraction mainly consists of readily degradable geolipids 160 

and pigments predominantly derived from autochthonous OM (e.g., algal-derived lipids; Carrie et 161 

al., 2012). Operational definition of organic lipids is the fraction of organic matter isolated from 162 

biological material by extraction with organic solvents (Meyers and Ishiwatari, 1993). Geolipids 163 

are diagenetically derived from biological lipids that undergo degradative alteration as the algae 164 

sinks to the bottom of lakes and after sedimentation when molecular composition is modified to 165 

various degrees depending on the composition of the parent lipid (Meyers and Ishiwatari, 1993). 166 
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S2 compounds in near-surface sediment are derived from the highly aliphatic biomacromolecule 167 

structure of algal cell walls and other aquatic biological matter (Sanei et al., 2005; Carrie et al., 168 

2012). The S3 portion of organic matter is dominated by carbohydrates, lignins, and terrigenous 169 

plant materials (Carrie et al., 2012). Humic and fulvic acids are also represented in the S3 fraction 170 

(Albrecht et al., 2015).  171 

Sediment sub-samples were submitted to Acme Analytical Laboratories (Bureau Veritas), 172 

Vancouver, for geochemical analyses. Sub-samples were freeze dried and screened to <180 µm (-173 

80 mesh ASTM) at the laboratory. Concentrations of elements in sediment samples were 174 

determined by inductively coupled plasma-mass spectrometry (ICP-MS) (ICP-MS 1F/AQ250 175 

package) following digestion by a modified aqua regia treatment (0.50 g of sample digested in a 176 

solution of 2.0 mL HCl, 2.0 mL HNO3 and 2.0 mL H2O at 95 ºC for one hour) with the exception 177 

of phosphorus, which was extracted using NaHCO3. Partial digestion with aqua regia was used to 178 

extract metal(loid)s that could become bioavailable and because complete digestion methods that 179 

involve high-temperature fuming can volatilize As and Sb, both contaminants of potential concern 180 

in this study (Parsons et al., 2012). Three pulp duplicates were analyzed to assess analytical 181 

precision. Relative Percent Difference (RPD) ranges from 1.5% to 4.3% for As. Standard reference 182 

materials (STD OREAS45EA n=11; STD D10 n=2; STD DS9 n=9) were used assess analytical 183 

accuracy. For STD OREAS45EA mean measured As concentration is 9.7 mg.kg-1 ± 1.16 (n=11) 184 

vs. an expected concentration of 10.3 mg.kg-1 for As following aqua regia digestion. Mean RPD 185 

between As concentrations measured in STD OREAS45EA vs. the expected value is 6.9% ± 11.9. 186 

STD DS10 had a mean measured As concentration of 45.6 mg.kg-1 ± 0.1 (n=2) vs. an expected 187 

concentration of 46.2 mg.kg-1 (mean RPD of 1.3% ± 0.3). STD DS9 had a mean measured As 188 

concentration of 27.4 mg.kg-1 ± 1.42 (n=9) vs. an expected concentration of 25.5 mg.kg-1 (mean 189 

RPD of 7.8% ± 4.0). Eleven laboratory methods blanks were analyzed. Arsenic is undetectable 190 
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(<0.1 mg.kg-1) in n=9 laboratory blanks. Two blanks had measured concentrations of As of 0.2 191 

mg.kg-1 and 0.1 mg.kg-1. 192 

 193 

3.2 Arsenic mineralogy 194 

 195 

Several mineral forms of As are expected to be present in near-surface lake sediments of 196 

the Yellowknife area. These are arsenopyrite (FeAsS) containing up to 46 wt.% As, arsenic 197 

sulphides (e.g., realgar (As4S4) and arsenian pyrite (FeS2)) that contain up to 70 wt.% As, and iron 198 

oxyhydroxides (e.g., goethite, ferrihydrite) containing up to 4 wt.% As (Walker et al., 2005). These 199 

minerals are geogenic or authigenic in origin. Iron oxides (hematite, magnetite, maghemite) 200 

containing up to 7 wt.% As (Schuh et al., 2017) and As2O3 containing up to 76 wt.% As are 201 

anthropogenic in origin and emitted directly from the roaster stack (Bromstad et al., 2017). 202 

Arsenopyrite in sediments of lakes away from tailings and waste rock is expected to be geogenic 203 

and unrelated to mining and mineral processing. The iron oxyhydroxides, realgar, and some pyrite, 204 

particularly framboidal pyrite, likely form in situ in sediments and can be therefore described as 205 

authigenic although the As, and possibly S, may originate from the deposition of stack emissions 206 

of As2O3 and SOx (Schuh et al., 2017).  207 

 Near-surface lake sediment samples (L14S3, L19S2, BC-2, BC-13, BC-17, BC-19, BC-32, 208 

BC-47) within ~20 km of the historic Giant Mine roaster were selected based on total As 209 

concentration (>100 mg.kg-1) for identification of mineral forms of As using Scanning Electron 210 

Microscopy (SEM) (Galloway et al., 2012, 2015; Howell, 2014; Fig. 1; Suppl. 2). Three additional 211 

near-surface lake sediment samples were analyzed as controls; one from a lake 15.6 km west of 212 

the historic Giant Mine roaster (L16S3; 62.6905°N, -114.6642°W) and two from lakes located 213 

distal to Giant Mine along the Tibbitt to Contwoyto Winter Road (R11-14-11, 65.0642°N, -214 
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109.9141°W, ~372.4 km NE of the historic roaster; R11-15-05, 63.1354°N, -113.2303°W, ~109.5 215 

km NE of the historic roaster; Macumber et al., 2011; Galloway et al., 2012, 2015).   216 

Sediment sub-samples were dried and doubly-polished thin sections, 35-50 µm thick, were 217 

prepared by Vancouver Petrographics. Samples were designed to be “liftable” so that synchrotron-218 

based µXRD would be possible. Two samples with high As concentrations (BC-13 and BC-17; 219 

740.7 ppm and 4778.2 ppm, respectively, Suppl. 2) and one sample with a lower concentration of 220 

As (L16S3; 155 pm by ICP-OES and aqua regia digestion; Galloway et al., 2012) were carbon 221 

coated for Mineral Liberation Analysis (MLA). Mineral Liberation Analysis allows for automated 222 

scanning of thousands of particles to more efficiently locate and analyze rare As-bearing minerals 223 

(Sylvester, 2012; Van Den Berghe, 2016). Thin sections were examined using the MLA 650 FEG 224 

ESEM (Environmental Scanning Electron Microscope) at Queen’s University, Kingston, Ontario, 225 

to observe As-bearing minerals. Samples were analyzed using a voltage of 25 kV, chamber 226 

pressure of 0.6 Torr, and a spot size of 5.00-5.78 µm. Operating conditions used during MLA 227 

analysis were set to 25 kV for the accelerating voltage and 5.78 µm for the spot size. Mineral 228 

Liberation Analysis (MLA) was used to locate rare As-oxide phases in two of the samples (BC-229 

13, BC-17; Howell, 2014).  230 

Samples BC-13 and BC-32 were selected for synchrotron-based microanalysis due to the 231 

presence of As-oxide in BC-13 as determined using MLA, and because of relatively high As 232 

concentrations in sample BC-32 (955.1 ppm; Suppl. 2). The thin sections used for synchrotron-233 

based microanalysis were soaked in HPLC-grade acetone to dissolve the cyanoacrylate holding 234 

the polished section to the glass slide. Once detached, the polished sections were placed on 235 

polyimide (Kapton) tape. Synchrotron-based µXRF and µXRD were performed at the X26-A 236 

beamline at the National Synchrotron Light Source, Brookhaven National Laboratories, New 237 

York. A beam energy of 13.5 KeV was used for µXRF to excite elements of interest (K- and L-238 
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edge emissions). Beam spot size was approximately 6 x 9 µm. µXRF maps were produced with a 239 

step (pixel) size of 3 to 7 µm and a dwell time of 0.1 seconds/pixel. µXRD analyses were done at 240 

17.479 KeV to enable a suitable 2-theta range to identify most minerals. Background diffraction 241 

patterns from analyses of the polyimide tape were subtracted, significant bright spots from macro-242 

crystallinity were masked out, and the final 2-D diffraction pattern of the targeted minerals was 243 

integrated and converted to 1-D spectra using the computer program Fit2DTM (Hammersley, 2004). 244 

The spectra were then compared to mineralogical phases using the peak-matching software X-Pert 245 

HighScore Plus (PANalytical). Five As oxide grains located in BC-13 and BC-32 were analyzed 246 

using synchrotron-based µXRF to produce an elemental map to identify targets for µXRD. Two 247 

grains, 1 from each sample, were suitable for synchrotron-based µXRD (Stavinga, 2014).  248 

 249 

3.3 Statistical analyses 250 

 251 

Elements with concentration below detection in 35% or more of the samples were removed 252 

from statistical analyses (B, Te, Ge, In, Re, Pd, Pt). One half of the method detection limit (MDL) 253 

was used for element concentrations below the MDL (W, Hg, Se, Hf, Sn had 5, 2, 2, 16, and 10 % 254 

non-detects, respectively). While substituting ½ of the MDL for non-detects can result in loss of 255 

information (e.g., Helsel, 2006), this effect is minimized if the proportion of non-detects is low 256 

(e.g., 10-15%; e.g., Lubin et al., 2004) and is thus a commonly used method (e.g., RCRA, 1992, 257 

2002). Where element concentration exceeded MDL, we used the upper MDL in statistical 258 

analyses. This case only occurred for As in sample BC-19 (As MDL = 10,000 mg.kg-1). 259 

Statistical analyses are conducted on raw data. Geochemical data are not normalized because grain 260 

size variation is low (e.g., CVsilt=7.87%; Reimann and de Caritat, 2005) and is not related to As 261 

concentration (e.g., clay; Suppl. 3).  262 
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Principal Components Analysis was used to explore the chemical and ordinal dataset 263 

following log-transformation of numerical data. Potential control variables (grain size, Rock Eval 264 

pyrolysis parameters, lake area, and distance from the historic roaster) were fitted to the solution 265 

post-hoc using the Envfit procedure with 999 permutations. Permutational Multivariate Analysis 266 

of Variance (PERMANOVA) was used to test the homogeneity of multivariate dispersions within 267 

groups and thus evaluate which possible controls are important for explaining differences in the 268 

multivariate dataset. Samples were tested for normality using the Anderson-Darling normality test 269 

alongside plotting on a normal probability plot. Arsenic concentrations are highly non-normally 270 

distributed. Spearman’s rank correlation analysis was used to explore the relationship between 271 

sedimentary As concentration and other variables. Distance from the historic mine has one of the 272 

strongest relationships with sedimentary As concentration (rs=-0.57, p<0.05, n=105) and was 273 

further evaluated using log-transformed linear regression modelling. To remove the influence of 274 

distance and explore the relationship of the other variables with As concentration, two sub-275 

populations of samples were determined using distance-constrained paired group hierarchical 276 

cluster analysis based on sedimentary As concentration. The two sub-populations, those within 11 277 

km from the historic roaster stack and those beyond this distance have non-identical As 278 

concentrations (Kruskal-Wallis test H=7.29, p<0.05, n=105). Spearman’s rank correlation analysis 279 

was again performed on the two sub-populations to explore the relationship of chemical and other 280 

ordinal variables with sedimentary As concentration. Direction from the historic roaster stack 281 

(circular data) cannot be analyzed by standard statistical methods. These data were binned into 282 

eight categories (0-45, 46-90, 91-135, 136-180, 181-225, 226-270, 271-315, 316-360°). Median 283 

As concentrations in each category were compared using the Kruskal-Wallis test and box plots. 284 

All analyses were performed in R v.3.1.2 (R Core Team, 2014) and PAST v. 3.11 (Hammer et al., 285 

2001). The vegan package in R was also used for multivariate analysis (Oksanen et al., 2013). 286 
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 287 

4.0 Results 288 

 289 

The area of each of the 100 lakes sampled range between 0.3 to 3561.0 ha (median 30.3 290 

ha, n=105). Median sample site distance from the historic Giant Mine roaster stack is 10.3 km 291 

(range, 1.0 to 31.4 km, n=105). Surface waters are circum-neutral (median pH = 7.9, range 6.6-292 

9.0, n=104) and well oxygenated (median dissolved oxygen surface 11.2 mg/L, range 1.7-14.2 293 

mg/L, n=103). Only one site had surface water oxygen <3.0 mg/L. Bottom waters range from 294 

dysoxic to oxic (median dissolved oxygen 10.4 mg/L, range 0.1-13.9 mg/L, n=73) and seven lakes 295 

are dysoxic (bottom water oxygen <3.0 mg/L) during the open water season. Surface water 296 

conductivity ranges from 31.3-626.0 µS/cm (median 124.8 µS/cm, n=103) and bottom water 297 

conductivity ranges from 31.3-626.0 µS/cm (median 91.1 µS/cm, n=73). Median water depth at 298 

sampling locations was 1.6 m (range 0.3-13.3 m, n=102; Suppl. 2).  299 

 300 

4.1 Sediment characteristics 301 

 302 

Lake sediment samples are dominated by silt sized particles (<63 µm; median 74.77%, 303 

range 4.92% to 90.32%, n=105). Median clay (<4 ȝm) content of samples is 13.13% (range 1.40% 304 

to 35.55%) and median sand (>63 ȝm) content of samples is 9.98% (range 0.00% to 93.68%) 305 

(Suppl. 2). 306 

The samples have total organic carbon (TOC) content typical of lake sediments (median 307 

24.86%, range 1.15% to 33.39%, n=105). The majority of organic matter in sediment samples is 308 
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S2 kerogen (median 7.38 wt.%, range 0.20-11.26 wt.%). S3 kerogen ranges from 0.17-4.68 wt.% 309 

(median 2.91 wt.%) and S1 kerogen ranges from 0.03-5.52 wt.% (median 2.33 wt.%) (Suppl. 2). 310 

 311 

4.2 Arsenic concentration 312 

 313 

Arsenic concentration in the lake sediment samples is highly variable, ranging from 5.0 314 

mg.kg-1 to >10,000 mg.kg-1 (median 81.2 mg.kg-1, n=105; Suppl. 2). Median As concentration in 315 

the sediments is above the Canadian Council of the Ministers of the Environment (CCME) 316 

Probable Effects Level (PEL) of 17 mg.kg-1 (CCME, 2002) and regional background 317 

concentrations of ~25 mg.kg-1 for As in lake sediments of the Yellowknife area (Galloway et al., 318 

2015).  319 

 320 

4.4 Assessing controls on the distribution of arsenic in lake sediments 321 

 322 

Principal Components Analysis reveals an association of As with both Au and Sb in the lake 323 

sediments (Fig. 2). PERMANOVA analysis shows that the lithology of the catchment bedrock is 324 

important for explaining differences in the overall multivariate chemical dataset (p<0.04). 325 

The relationship of As to other elements, bedrock type, sedimentary particle size, organic 326 

matter, and physical characteristics (e.g., lake area, connectivity) was explored using Spearman’s 327 

Rank correlation analysis to determine the association and potential influence of these variables 328 

on the concentration of As in the lake sediments. In order of decreasing importance, these are S1, 329 

bedrock type, S3, S2, silt, and TOC (p<0.05, n=105; Suppl. 3). Arsenic is highly positively 330 

(rs≥0.50) and significantly (p<0.05) correlated to other elements enriched in the ore mined at Giant 331 

Mine, including Sb, Au, Cd, Mo, and S. The relationship between As and all of the other ordinal 332 
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variables, including lake order, hydrology, area, connectivity, and Strahler stream order and 333 

catchment type are non-significant (Suppl. 3). 334 

Ordinary least squares regression on log-transformed data was used to model the 335 

relationship between the concentrations of sedimentary As and distance from the historic Giant 336 

Mine roaster and S1, the two non-element geochemical variables with the highest relationship to 337 

sedimentary As concentration, for all lakes. Sedimentary As concentration is significantly 338 

negatively related to distance from the historic mine (r2=0.35, p<0.001, n=105) and positively 339 

related to S1 (r2=0.25, p<0.001, n=105; Suppl. 3, 4). 340 

Sedimentary As concentrations decline with increasing distance from the historic mine 341 

(Suppl. 4). To remove the influence of distance on sedimentary As concentration and explore other 342 

relationships, distance-constrained paired group hierarchical cluster analysis was used to delineate 343 

two sub-populations of lakes based on sedimentary As concentration (Suppl. 5). We selected 11 344 

km as a cut-off based on cluster analysis results and sample size consideration in sub-populations 345 

for further statistical analyses. Arsenic concentrations of sediment samples from lakes within 11 346 

km of the historic mine are significantly greater (median 160.5 mg.kg-1, 5.0-10,000 mg.kg-1, n=54) 347 

than those in samples from lakes beyond this distance (n=51) (39.6 mg.kg-1, 5.0-5.2 mg.kg-1, n=51; 348 

Kruskal-Wallis test H=7.29, p<0.05, n=105; Fig. 3).   349 

Spearman rank correlation analysis on the two sub-populations show that similar to the 350 

whole dataset, Au and Sb remain correlated (p<0.05) to As concentration in sediments from lakes 351 

within 11 km from the historic roaster and in lakes beyond this distance. S1 and As are also 352 

significantly (p<0.05) correlated in both sub-populations but the relationship is strongest in the 353 

within 11 km sub-population (rs=0.71 vs. rs=0.38; Suppl. 3).  354 

Direction from the historic roaster also appears to be a control on sedimentary As 355 

concentrations because there is a significant difference between category medians (Kruskal-Wallis 356 



18 
 

18 
 

H=42.78; p<0.05, n=105, 8 groups). Median As concentrations are higher in sediments of lakes to 357 

the N and NW of the historic roaster (Fig. 4).  358 

 359 

4.3 Mineralogy 360 

 361 

4.3.1 Scanning electron microscopy and mineral liberation analysis (SEM-MLA) 362 

Iron-oxides, As-sulphides, As-oxides, rare arsenopyrite (FeAsS), and pyrite (FeS2) were 363 

observed and identified using SEM and MLA analysis of sediments. Fe-oxides were observed in 364 

many of the samples and were common in samples R11-14-11 and BC-2, where Fe-oxides 365 

appeared to be Fe-Mn-oxides and did not exhibit the texture associated with roaster-generated Fe 366 

oxides. Pyrite was present in every sample except R11-14-11 and was particularly abundant in 367 

samples and L19S2, BC-32, and BC-47. Where present, pyrite was often framboidal and As was 368 

present in trace amounts. SEM-MLA was used to identify arsenopyrite, As-sulphides, and traces 369 

of As-oxides with a distinct spongy texture in BC-13 and BC-17.  370 

 371 

4.3.2 Synchrotron-based µXRF and µXRD 372 

Five As-bearing grains in two selected samples (BC-17, BC-32) were targeted for µXRF 373 

and µXRD analysis (BC-17, BC-32). Two grains (one from each sample) could be reliably located 374 

on µXRF images and subsequently provided adequate diffraction patterns for integration and 375 

identification. The grain from sample BC-32, which was obtained from sediments of a lake 9.2 km 376 

from the historic Giant Mine Roaster at 273° (NNW and down-wind from the roaster), gave the 377 

clearest diffraction pattern with the most distinct peaks (Suppl. 6). The mineral phase arsenolite 378 

(As2O3) provided the closest match to the sample’s integrated diffraction spectra. The As-oxide 379 
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grain from sample BC-17 (3.2 km and 249° (NW) from the historic Giant Mine roaster) had a less 380 

distinct pattern; however, the main peaks still provided a close match to arsenolite. 381 

A single As- and S-rich grain on the MLA map from sample BC-17 was selected for µXRD. 382 

Diffraction from this grain proved to be relatively poor and there was difficulty in reliably 383 

matching the integrated spectra to a known mineral phase. Peaks matching both realgar and 384 

arsenolite suggest this may be a mixture.   385 

 386 

5.0 Discussion  387 

 388 

Basin bathymetry was not known for Yellowknife study lakes and Zmax could not be targeted. 389 

As a result, As and other element concentrations of Yellowknife area lakes reported here may, if 390 

zones of erosion or transportation (sensu Blais and Klaff, 1995) were sampled, be substantially 391 

lower than those in the zone of accumulation in the study lakes. A lack of grain size variation (CV 392 

silt = 7.87%) and lack of relationship between clay and As (p<0.05; Suppl. 3) suggests that 393 

sediment size, expected to be related to sample location, is not a dominant control on As 394 

concentration in Yellowknife area lake sediment samples. Approximately 86% of the As2O3 395 

released as stack emissions from Giant Mine occurred prior to 1963 (Wrye, 2008). Consequently, 396 

maximum As concentration in some lake sediment profiles occurs below the sediment-water 397 

interface in sediments dating to the late 1940’s (Schuh et al., 2017), but in other lakes maxima 398 

occur in younger sediments (Andrade et al., 2010) or sediments near the sediment-water interface 399 

(Schuh et al., 2017) likely controlled by post-depositional remobilization of arsenic via reductive 400 

dissolution and upward diffusion.  401 

 402 

5.1 Legacy mineral processing released arsenic to surrounding environments 403 
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 404 

 Arsenic concentrations in the Yellowknife area lake sediment samples are significantly 405 

negatively related to the distance from the historic Giant Mine roaster (rs=-0.57, p<0.05, n=105, 406 

Suppl. 3; ordinary linear squares regression r=-0.60, r2=0.35, p<0.001, n=105; Suppl. 4). Palmer 407 

et al. (2015) show that the concentration of As Yellowknife area lake surface water within a 17.5 408 

km radius of Giant Mine and downwind from historic mining activity are elevated relative to more 409 

distal lakes and upwind sites. Houben et al. (2016), in their study of As concentration of surface 410 

waters of 25 small (median 2.9 ha) and shallow (median 1.2 m) lakes within a 25 km radius of 411 

Giant Mine, also show that As concentrations in surface waters are highest in lakes closest to the 412 

mine, a pattern they interpret to be the result of relatively proximal deposition of atmospherically 413 

emitted roaster stack combustion products. Roasting of gold ore associated with arsenopyrite 414 

released SO2 along with metal(loid)s, including Sb, to the atmosphere (Hocking et al., 1978; 415 

Hutchinson et al., 1982). Stibnite (Sb2S3) and Sb-bearing sulfosalts were present in the ore roasted 416 

at Giant Mine, resulting in generation of a gaseous Sb-phase that was incorporated in the structure 417 

of As2O3 during its crystallization (Riveros et al., 2000; Fawcett and Jamieson, 2011) and Sb oxide 418 

was the third largest oxide concentration in baghouse dust collections from Giant Mine (SRK, 419 

2002). Antimony also declines with distance from the roaster stack in Yellowknife area lake 420 

surface waters (Houben et al., 2016). Sedimentary Sb is highly correlated to As and Au in 421 

Yellowknife area lake sediments (rs=0.92 and rs=0.84, respectively, p<0.05, n=105) and declines 422 

with distance from the historic roaster stack (rs=-0.58, p<0.05, n=105; Suppl. 3). While these 423 

spatial observations and high positive element correlations between As, Au, and Sb are suggestive 424 

of point source emission (e.g., Bonham-Carter, 2005; Houben et al., 2016), the Giant Mine is also 425 

located on mineralized bedrock elevated in these elements relative to average upper crustal 426 

composition (As=4.4-4.8 mg.kg-1; Au=1.2-1.8 ng.g-1; Sb=0.4 mg.kg-1; Rudnick and Gao, 2004). 427 
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This bedrock and locally derived surficial materials represent a geogenic source of As and other 428 

elements to lake sediments. Our analysis show that bedrock formation is related to the As 429 

concentration of lake sediments (rs=-0.35, p<0.05, n=105, Suppl. 3; PERMANOVA p=0.04; Fig. 430 

2). The concentration of metal(loid)s associated with gold ore and its mineral processing, including 431 

Au, Sb, and Hg are also significantly related to bedrock type (rs=-0.35, rs=-0.48, respectively, 432 

p<0.05, n=105), with highest concentrations in sediments of lakes occurring on granitoid bedrock, 433 

expected to provide little geogenic input of these elements (Suppl. 3). Sedimentary As 434 

concentrations are significantly related to direction from the historic roaster (Fig. 4). Higher 435 

concentrations occur in sediments of lakes to the N and NW underlain by granitoid bedrock occurs 436 

where prevailing winds would have dispersed emitted As2O3 and other roaster emissions (Figs. 1, 437 

4; Galloway et al., 2012). We therefore interpret these element relations with bedrock to reflect 438 

emission from the historic roaster, transport to the NW with prevailing winds and airborne 439 

deposition into these lakes and their watersheds (Galloway et al., 2012). The meta-analysis of 440 

Houben et al. (2016) on a smaller number of sample lakes show that while bedrock composition 441 

has an influence on the As concentration of regional surface waters, geogenic sources are not an 442 

important factor controlling elevated As in waters of lakes near the mine.  443 

To explore the hypothesis that mineral processing has influenced lake sediment 444 

geochemistry further, SEM and MLA analyses of selected sediment samples from lakes within 20 445 

km of Giant Mine were used to demonstrate the presence of As oxide in sediments of two of the 446 

five lake sediment samples analyzed (BC-17, BC-32; Howell, 2014). Synchrotron-based µXRF 447 

was used to target two As oxide grains in sediment samples from lakes BC-13 and BC-32 and 448 

µXRD was used to identify the As oxide phases as arsenolite (As2O3). These lakes are located 3.2 449 

km and 9.2 km away from the Giant Mine historic roaster, respectively, and both are located 450 

downwind of the historic roaster and underlain by granitoid bedrock (Suppl. 3). To our knowledge, 451 
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arsenolite has never been found to naturally occur in lake sediments; its presence therefore 452 

provides convincing evidence that roasting of gold ore in the Yellowknife region resulted in 453 

atmospheric dispersion of this mineral to the landscape near the Giant Mine historic roaster stack. 454 

Previous studies demonstrated the persistence of As2O3 in the immediate environment surrounding 455 

the historic Giant Mine roaster in thin soils on rocky outcrops (Bromstad et al., 2017). Recent 456 

studies document As2O3 in the sediments of five other lakes within five km of the historic roaster 457 

(BC-20, Handle Lake/YK-42, Lower Martin Lake/BC-15, Long Lake, Martin Lake/BC-13; Van 458 

Den Berghe, 2016; Schuh et al. 2017).   459 

 460 

5.2 Controls on sedimentary arsenic in Yellowknife area lakes 461 

 462 

Several interrelated processes control As cycling in freshwater sediments. Arsenic that 463 

enters surface waters as detrital minerals may be directly deposited into lake sediments with little 464 

or no alteration of the original As-bearing phases. The ore roasting product As2O3 is present in 465 

Yellowknife area lake sediments, indicating that deposition and preservation of even this highly 466 

soluble mineral form is possible (Stavinga, 2014; Van Den Berghe, 2016; Schuh et al., 2017). In 467 

oxic and circum-neutral settings, oxidation and dissolution of As-bearing sulphide minerals may 468 

release As into waters where dissolved As(V) has a strong affinity for mineral surfaces, particularly 469 

Fe/Mn(hydr)oxides, and may be removed from solution through adsorption or co-precipitation 470 

(Bowell, 1994; Smedley and Kinniburgh, 2002). Arsenic sorbed to mineral surfaces may then be 471 

accumulated in the sediments and this can be an effective means of sequestration (Bowell, 1994; 472 

Smedley and Kinniburgh, 2002; Langner et al., 2013), so long as redox conditions remain 473 

consistent. In Yellowknife area lake sediments, As is negatively correlated to Al (Suppl. 3) 474 

although the partial digestion method used makes this difficult to interpret. Arsenic is non-475 
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significantly correlated to Mn, regardless of distance from the historic mine, and displays a 476 

significant relationship with Fe in samples from lakes beyond 11 km from the historic mine but 477 

not in those within 11 km, despite the fact that  Fe and Mn are significantly related to each other 478 

(Fig. 5). These relationships suggest that in lakes close to the historic roaster stack, 479 

Fe/Mn(hydr)oxide sequestration of As is not a dominant process controlling elevated sedimentary 480 

As concentration.  481 

Using X-ray Absorption Near Edge Spectroscopy (XANES), Van Den Berghe (2016) 482 

documents As(V) and As(III) associated with ferric oxides in the upper 4 cm of Handle Lake (YK-483 

42), Lake BC-20, and Lower Martin Lake (BC-15), but not as a major host of As. Most of the As 484 

is hosted in As-sulphide minerals, and more As is hosted in As2O3 than in Fe oxides. Van Den 485 

Berghe (2016) hypothesizes that dissolution of As2O3 and reductive dissolution of 486 

Fe/Mn(hydr)oxides is releasing soluble As to porewaters, most of which diffuses upward in the 487 

sediment, while the remaining As is authigenically reprecipitated as As-sulphide. In Yellowknife 488 

study lakes, sediment As concentration is correlated with S (rs=0.49, p<0.05, n=105) but negatively 489 

correlated with Fe (rs=-0.22, p<0.05, n=105; Fig. 5), suggesting that formation of secondary As-490 

sulphide minerals is an important process throughout the region. In deep water sediments from 491 

Long Lake enriched in As2O3, the presence of As-bearing sulphides suggests that partial 492 

dissolution of As2O3 in the presence of reduced S has attenuated more bioaccessible As2O3 from 493 

stack emissions to a less accessible sulphide phase (Schuh et al., 2017). Iron free As-sulphide is 494 

not associated with mineralization (Coleman, 1957) or any tails at Giant (Walker et al., 2015; 495 

Fawcett and Jamieson, 2011), and is therefore interpreted to be an authigenic amorphous, realgar-496 

like preciptitate (Schuh et al., 2017). Authigenic precipitation of As-bearing sulphides is likely to 497 

be mediated by OM through its influence on pore water redox gradient and microbial activity. 498 

Precipitation of As-bearing sulphide minerals such as realgar, pararealgar, or orpiment is often 499 
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microbial-mediated (Newman et al., 1997; Smedley and Kinniburgh, 2002; O’Day, 2004; Root et 500 

al., 2009; Drahota et al., 2013). Organic carbon is a substrate for microbial growth (Campbell and 501 

Nordstrom, 2014), and in particular, the labile geolipids that represent the S1 fraction of TOC, are 502 

readily biodegradable (Sanei et al., 2005). Promotion of microbial-mediated authigenic 503 

precipitation of As-sulphides by OM may explain the observed relationship between the highly 504 

bioavailable and labile form of OM (S1) and the concentration of As in Yellowknife area lake 505 

sediments (As:S rs=0.55, p<0.05, n=105; Fig. 5). S1 and As are also both correlated to S (rs=0.63, 506 

p<0.05; rs = 0.49, p<0.05, respectively, n=105; Fig. 5).  507 

In addition to promoting and mediating sulphide formation in sediments, OM, and in 508 

particular the S1 fraction, can also coat surface sediment particles providing an organic substrate 509 

with a large surface area for metal(loid)-OM complexation (Sanei et al., 2005; Campbell and 510 

Nordstrom, 2014). Organic carbon is also capable of directly storing adsorbed As (Sadiq, 1997; 511 

Wrye, 2008; Meunier et al., 2011). For example, As(III ) can be sequestered through passive 512 

complexation with sulfhydryl groups on OM that appear to occur under conditions unfavorable for 513 

As-sulfide precipitation, such as where the quantity of dissolved S was too low to support 514 

precipitation of As-sulphide minerals (Langner et al., 2013). Breakdown of low molecular weight 515 

OM, such as sugars (related to the S1 fraction; Carrie et al., 2015), can release organic acids that 516 

comprise a portion of dissolved OM (DOM; Martínez et al., 2003). Dissolved OM can affect the 517 

mobility of As through direct complexation with aqueous As(III) and As(V) via positively charged 518 

amino groups in DOM (Saada et al., 2003), metal cation bridges (Redman et al., 2002), or through 519 

mediation of processes at mineral surfaces (precipitation, dissolution, ad- and de-sorption). 520 

Dissolved OM (e.g., fulvic and humic acids) can form stable complexes with mineral surfaces that 521 

block As adsorption (Kaiser et al., 1997; Grafe et al., 2001, 2002; Bauer and Blodau, 2006; Dobran 522 

and Zagury, 2006). Organic anions and DOM have been found to enhance As leaching from soil 523 
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material (Lin et al., 2002; Dobran and Zagury, 2006) where As is associated with the metal oxide 524 

fraction (Lombi et al., 2000). Arsenic desorption from Fe oxides in the presence of DOM (Redman 525 

et al., 2002; Bauer and Blodau, 2006) and fulvic or humic acids (Grafe et al., 2001,  2002) may 526 

also be microbial-mediated whereby DOM serves as a labile substrate for microbial growth 527 

(Harvey and Swartz, 2002; Mladenov et al., 2009; Campbell and Nordstrom, 2014). Redox active 528 

functional groups associated with DOM can also act as an electron shuttle between micro-529 

organisms and Fe and thus enhance microbial iron reduction and release of sorbed As 530 

(Schwarzenbach et al., 1990; Lovley et al., 1996; Mladenov et al., 2009).  531 

The relationship between S1 and As in Yellowknife area lake sediments may reflect a 532 

complex set of mechanisms by which both kerogen and DOM can influence As mobility, and are 533 

likely to become more important under a warming climate with enhanced OM flux from thawing 534 

permafrost (e.g., Vonk et al., 2013) among other mechanisms, resulting in potential for increased 535 

As concentrations in the water column of Yellowknife area lakes over time. Additional research 536 

(e.g., Carrie et al., 2005) is required to better characterize solid organic matter fractions as 537 

determined by Rock-Eval pyrolysis to better understand the nature of S1 and As interaction. 538 

Additional research characterizing bacterial assemblages and their metabolic activities would be 539 

key for understanding OM and metal redox geochemistry in the lake sediments.  540 

 541 

6.0 Conclusions 542 

 543 

Lake sediment As concentrations are significantly related to distance and direction from 544 

the former Giant Mine, with increased concentrations in lakes close to and downwind from the 545 

historic roaster. Ordination shows that lakes with the highest concentration of As in sediments 546 

occur on granitoid bedrock; a bedrock type containing average As concentrations near 2 mg.kg-1. 547 

http://www.sciencedirect.com/science/article/pii/S0048969705000689#bib12
http://www.sciencedirect.com/science/article/pii/S0048969705000689#bib13
http://www.sciencedirect.com/science/article/pii/S0048969705000689#bib15
http://www.sciencedirect.com/science/article/pii/S0048969705000689#bib36
http://www.sciencedirect.com/science/article/pii/S0048969705000689#bib26
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We interpret this relationship to reflect aerial emission and transport direction of As predominantly 548 

to the NW by winds and deposition in lakes and catchments located on granitoid bedrock.Arsenic 549 

trioxide (As2O3) is documented in the sediments of two lakes studied using synchrotron-based 550 

µXRF and µXRD, providing direct evidence of historic roaster impacts and persistence of this 551 

mineral in lake sediments.  552 

Labile organic matter (S1 as determined by Rock Eval pyrolysis) is significantly related to 553 

sedimentary As and S concentrations in Yellowknife area lake sediments. S1 may be a substrate 554 

for microbial growth and mediation of authigenic precipitation of As-sulphides. Other possibilities 555 

include physical coating of particles by S1, creating a large and reactive surface for As 556 

complexation, coating and encapsulation of pre-existing solid-phase As; and, soluble organic anion 557 

competition with As for sorption sites on mineral surfaces. Increased biological production, release 558 

of OM from melting permafrost, and changes in transportation pathways though changing 559 

hydrological regimes may thus lead to changes in As biogeochemical cycling. The type and source 560 

of OM is an important consideration for characterization of the mobility and fate of As and other 561 

elements. 562 
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Figure 1: Map showing sample locations colour coded by sedimentary Arsenic concentration 1111 

(bedrock geology modified after Falck, 2002) 1112 

 1113 

Figure 2. Principal Components Analysis of log-transformed data.  Potential control 1114 

variables (grain size, Rock Eval parameters, lake area, and distance from the historic 1115 

roaster) were fitted to the solution post-hoc using the Envfit procedure with 999 1116 

permutations 1117 

 1118 

Figure 3: Box and whisker plot of sedimentary As concentration in samples from lakes within 1119 

11 km from the historic roaster and lakes beyond this distance 1120 

 1121 

Figure 4: Top – wind rose diagram for the Yellowknife A climate station (62.46°N, 1122 

114.44°W 205.7 m asl) showing how many hours per year the wind blows in the indicated 1123 

direction. Data from 1970-2010 available at 1124 

http://climate.weather.gc.ca/climate_normals/results_e.html?stnID=1706; figure from 1125 

https://www.meteoblue.com/en/weather/forecast/modelclimate/yellowknife-1126 

airport_canada_6296340).  Bottom – Box and whisker plot of sedimentary log As 1127 

concentration in samples from lakes at different directions (degrees) from the historic 1128 

roaster 1129 

 1130 

Figure 5: Log-log scatterplot of selected variables. Note changes in scale. Spearman rank 1131 

correlation coefficients from Suppl. 3 1132 

http://climate.weather.gc.ca/climate_normals/results_e.html?stnID=1706
https://www.meteoblue.com/en/weather/forecast/modelclimate/yellowknife-airport_canada_6296340
https://www.meteoblue.com/en/weather/forecast/modelclimate/yellowknife-airport_canada_6296340

