935 research outputs found

    Fermions from Half-BPS Supergravity

    Get PDF
    We discuss collective coordinate quantization of the half-BPS geometries of Lin, Lunin and Maldacena (hep-th/0409174). The LLM geometries are parameterized by a single function uu on a plane. We treat this function as a collective coordinate. We arrive at the collective coordinate action as well as path integral measure by considering D3 branes in an arbitrary LLM geometry. The resulting functional integral is shown, using known methods (hep-th/9309028), to be the classical limit of a functional integral for free fermions in a harmonic oscillator. The function uu gets identified with the classical limit of the Wigner phase space distribution of the fermion theory which satisfies u * u = u. The calculation shows how configuration space of supergravity becomes a phase space (hence noncommutative) in the half-BPS sector. Our method sheds new light on counting supersymmetric configurations in supergravity.Comment: 28 pages, 2 figures, epsf;(v3) eq. (3.3) clarified and notationally simplified; version to appear in JHE

    BPS Electromagnetic Waves on Giant Gravitons

    Full text link
    We find new 1/8-BPS giant graviton solutions in AdS5×S5AdS_5 \times S^5, carrying three angular momenta along S5S^5, and investigate their properties. Especially, we show that nonzero worldvolume gauge fields are admitted preserving supersymmetry. These gauge field modes can be viewed as electromagnetic waves along the compact D3 brane, whose Poynting vector contributes to the BPS angular momenta. We also analyze the (nearly-)spherical giant gravitons with worldvolume gauge fields in detail. Expressing the S3S^3 in Hopf fibration (S1S^1 fibred over S2S^2), the wave propagates along the S1S^1 fiber.Comment: 25 pages, no figures, v2: references adde

    1/16-BPS Black Holes and Giant Gravitons in the AdS_5 X S^5 Space

    Get PDF
    We explore 1/16-BPS objects of type IIB string theory in AdS_5 * S^5. First, we consider supersymmetric AdS_5 black holes, which should be 1/16-BPS and have a characteristic that not all physical charges are independent. We point out that the Bekenstein-Hawking entropy of these black holes admits a remarkably simple expression in terms of (dependent) physical charges, which suggests its microscopic origin via certain Cardy or Hardy-Ramanujan formula. We also note that there is an upper bound for the angular momenta given by the electric charges. Second, we construct a class of 1/16-BPS giant graviton solutions in AdS_5 * S^5 and explore their properties. The solutions are given by the intersections of AdS_5 * S^5 and complex 3 dimensional holomorphic hyperspaces in C^{1+5}, the latter being the zero loci of three holomorphic functions which are homogeneous with suitable weights on coordinates. We investigate examples of giant gravitons, including their degenerations to tensionless strings.Comment: 25 pages, no figures, v2: references added, comments added in the conclusio

    Optical application and measurement of torque on microparticles of isotropic nonabsorbing material

    Get PDF
    We show how it is possible to controllably rotate or align microscopic particles of isotropic nonabsorbing material in a TEM00 Gaussian beam trap, with simultaneous measurement of the applied torque using purely optical means. This is a simple and general method of rotation, requiring only that the particle is elongated along one direction. Thus, this method can be used to rotate or align a wide range of naturally occurring particles. The ability to measure the applied torque enables the use of this method as a quantitative tool--the rotational equivalent of optical tweezers based force measurement. As well as being of particular value for the rotation of biological specimens, this method is also suitable for the development of optically-driven micromachines.Comment: 8 pages, 6 figure

    A systematic review of the quality of evidence of ablative therapy for small renal masses

    Get PDF
    Purpose: We critically assessed the methodological and reporting quality of published studies of ablative techniques for small renal masses. Materials and Methods: We performed a systematic PubMed® and EMBASE® literature search from January 1966 to March 2010 to identify all full text, original research publications on ablative therapy for renal masses. Six reviewers working independently in 3 teams performed duplicate data abstraction using Strengthening the Reporting of Observational Studies in Epidemiology criteria, which were pilot tested in a separate sample. Results: A total of 117 original research publications published in a 15-year period (1995 to 2009) met eligibility criteria. No randomized, controlled trials were identified. All studies were observational and 88.9 had 1 arm with no comparison group. Median sample size was 18 patients (IQR 5.5, 40.0) and 53.8 of studies included 20 or fewer patients. Median followup was 14.0 months (IQR 8.0, 23.8) and only 19.7 of studies had an average followup of greater than 24 months. Of the studies 20.5 mentioned the number of operators involved and only 6.0 provided information on their experience level. Of the studies 66.7 addressed the recurrence rate. Disease specific and overall survival was reported in only 15.4 and 16.2 of studies, respectively. Conclusions: The published literature on the therapeutic efficacy of ablative therapy for renal masses is largely limited to uncontrolled, 1-arm observational studies. In the absence of higher quality evidence ablative therapy outside research studies should be limited to select patients who are not candidates for surgical intervention. © 2012 American Urological Association Education and Research, Inc

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Ki-67 Expression in Breast Cancer Tissue Microarrays

    Get PDF
    Objectives Ki-67 has been proposed to be used as a surrogate marker to differentiate luminal breast carcinomas (BCs). The purpose of this study was to determine the utility of and best approaches for using tissue microarrays (TMAs) and Ki-67 staining to distinguish luminal subtypes in large epidemiology studies of luminal/human epidermal growth factor receptor 2 (HER2)-negative BC. Methods Full-section and TMA (three 0.6-mm cores and two 1.0-mm cores) slides of 109 cases were stained with Ki-67 antibody. We assessed two ways of collapsing TMA cores: a weighted approach and mitotically active approach. Results For cases with at least a single 0.6-mm TMA core (n = 107), 16% were misclassified using a mitotically active approach and 11% using a weighted approach. For cases with at least a single 1.0-mm TMA core (n = 101), 5% were misclassified using either approach. For the 0.6-mm core group, there were 33.3% discordant cases. The number of discordant cases increased from 18% in the group of two cores to 40% in the group of three cores (P =.039). Conclusions Ki-67 tumor heterogeneity was common in luminal/HER2- BC. Using a weighted approach was better than using a mitotically active approach for core to case collapsing. At least a single 1.0-mm core or three 0.6-mm cores are required when designing a study using TMA

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Measurement of the branching fraction for Υ(1S)τ+τ\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)τ+τ)=(2.61 ± 0.12 +0.090.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN
    corecore