19 research outputs found

    Misidentification of transthyretin and immunoglobulin variants by proteomics due to methyl lysine formation in formalin-fixed paraffin-embedded amyloid tissue

    Get PDF
    Proteomics is becoming the de facto gold standard for identifying amyloid proteins and is now used routinely in a number of centres. The technique is compound class independent and offers the added ability to identify variant and modified proteins. We re-examined proteomics results from a number of formalin-fixed paraffin-embedded amyloid samples, which were positive for transthyretin (TTR) by immunohistochemistry and proteomics, using the UniProt human protein database modified to include TTR variants. The amyloidogenic variant, V122I TTR, was incorrectly identified in 26/27 wild-type and non-V122I variant samples due to its close mass spectral similarity with the methyl lysine-modified WT peptide [126KMe]105-127 (p.[146 KMe]125-147) generated during formalin fixation. Similarly, the methyl lysine peptide, [50KMe]43-59, from immunoglobulin lambda light chain constant region was also misidentified as arising from a rare myeloma-derived lambda variant V49I. These processing-derived modifications are not present in fresh cardiac tissue, non-fixed fat nor serum and do not materially affect the identification of amyloid proteins. They could result in the incorrect assignment of a variant, and this may have consequences for the immediate family who will require genetic counselling and potentially early clinical intervention. As proteomics becomes a routine clinical test for amyloidosis, it becomes important to be aware of potentially confounding issues such as formalin-mediated lysine methylation, and how these may influence diagnosis and possibly treatment

    The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure

    Get PDF
    We have recently discovered that the two tryptophans of human β2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of β2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of β2-microglobulin with respect to these residues

    Structural and folding dynamics properties of T70N variant of human lysozyme.

    No full text
    Definition of the transition mechanism from the native globular protein into fibrillar polymer was greatly improved by the biochemical and biophysical studies carried out on the two amyloidogenic variants of human lysozyme, I56T and D67H. Here we report thermodynamic and kinetic data on folding as well as structural features of a naturally occurring variant of human lysozyme, T70N, which is present in the British population at an allele frequency of 5% and, according to clinical and histopathological data, is not amyloidogenic. This variant is less stable than the wild-type protein by 3.7 kcal/mol, but more stable than the pathological, amyloidogenic variants. Unfolding kinetics in guanidine are six times faster than in the wild-type, but three and twenty times slower than in the amyloidogenic variants. Enzyme catalytic parameters, such as maximal velocity and affinity, are reduced in comparison to the wild-type. The solution structure, determined by 1H NMR and modeling calculations, exhibits a more compact arrangement at the interface between the beta-sheet domain and the subsequent loop on one side and part of the alpha domain on the other side, compared with the wild-type protein. This is the opposite of the conformational variation shown by the amyloidogenic variant D67H, but it accounts for the reduced stability and catalytic performance of T70N

    Properties of some variants of human beta 2- microglobulin and amyloidogenesis.

    No full text
    Dialysis-related amyloidosis is characterized by the deposition of insoluble fibrils of beta(2)-microglobulin (beta(2)-m) in the musculoskeletal system. Atomic force microscopy inspection of ex vivo amyloid material reveals the presence of bundles of fibrils often associated to collagen fibrils. Aggregation experiments were undertaken in vitro with the aim of reproducing the physiopathological fibrillation process. To this purpose, atomic force microscopy, fluorescence techniques, and NMR were employed. We found that in temperature and pH conditions similar to those occurring in periarticular tissues in the presence of flogistic processes, beta(2)-m fibrillogenesis takes place in the presence of fibrillar collagen, whereas no fibrils are obtained without collagen. Moreover, the morphology of beta(2)-m fibrils obtained in vitro in the presence of collagen is extremely similar to that observed in the ex vivo sample. This result indicates that collagen plays a crucial role in beta(2)-m amyloid deposition under physiopathological conditions and suggests an explanation for the strict specificity of dialysis-related amyloidosis for the tissues of the skeletal system. We hypothesize that positively charged regions along the collagen fiber could play a direct role in beta(2)-m fibrillogenesis. This hypothesis is sustained by aggregation experiments performed by replacing collagen with a poly-L-lysine-coated mica surface. As shown by NMR measurements, no similar process occurs when poly-L-lysine is dissolved in solution with beta(2)-m. Overall, the findings are consistent with the estimates resulting from a simplified collagen model whereby electrostatic effects can lead to high local concentrations of oppositely charged species, such as beta(2)-m, that decay on moving away from the fiber surface

    Recombinant amyloidogenic domain of ApoA-I: analysis of its fibrillogenic potential

    No full text
    none14noneDi Gaetano, S. and Guglielmi, F. and Arciello, A. and Mangione, P. and Monti, M. and Pagnozzi, D. and Raimondi, S. and Giorgetti, S. and OrrĂą, S. and Canale, C. and Pucci, P. and Dobson, C.M. and Bellotti, V. and Piccoli, R.Di Gaetano, S.; Guglielmi, F.; Arciello, A.; Mangione, P.; Monti, M.; Pagnozzi, D.; Raimondi, S.; Giorgetti, S.; OrrĂą, S.; Canale, C.; Pucci, P.; Dobson, C. M.; Bellotti, V.; Piccoli, R
    corecore