171 research outputs found

    Self-assembly of colloidal molecules due to self-generated flow

    Full text link
    The emergence of structure through aggregation is a fascinating topic and of both fundamental and practical interest. Here we demonstrate that self-generated solvent flow can be used to generate long-range attractions on the colloidal scale, with sub-pico Newton forces extending into the millimeter-range. We observe a rich dynamic behavior with the formation and fusion of small clusters resembling molecules, the dynamics of which is governed by an effective conservative energy that decays as 1/r1/r. Breaking the flow symmetry, these clusters can be made active

    Forces between Colloidal Particles in Aqueous Solutions Containing Monovalent and Multivalent Ions

    Full text link
    The present article provides an overview of the recent progress in the direct force measurements between individual pairs of colloidal particles in aqueous salt solutions. Results obtained by two different techniques are being highlighted, namely with the atomic force microscope (AFM) and optical tweezers. One finds that the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) represents an accurate description of the force profiles even in the presence of multivalent ions, typically down to distances of few nanometers. However, the corresponding Hamaker constants and diffuse layer potentials must be extracted from the force profiles. At low salt concentrations, double layer forces remain repulsive and may become long ranged. At short distances, additional short range non-DLVO interactions may become important. Such an interaction is particularly relevant in the presence of multivalent counterions.Comment: Submitted on 30th of May 2016 as invited article to Curr. Opinion Colloid Interf. Sci. Edited by W. Ducker and P. Claesson. 15 Pages, 7 Figures 82 reference

    Melting and Freezing Lines for a Mixture of Charged Colloidal Spheres with Spindle-Type Phase Diagram

    Full text link
    We have measured the phase behavior of a binary mixture of like-charged colloidal spheres with a size ratio of 0.9 and a charge ratio of 0.96 as a function of particle number density n and composition p. Under exhaustively deionized conditions the aqueous suspension forms solid solutions of body centered cubic structure for all compositions. The freezing and melting lines as a function of composition show opposite behavior and open a wide, spindle shaped coexistence region. Lacking more sophisticated treatments, we model the interaction in our mixtures as an effective one-component pair energy accounting for number weighted effective charge and screening constant. Using this description, we find that within experimental error the location of the experimental melting points meets the range of melting points predicted for monodisperse, one component Yukawa systems made in several theoretical approaches. We further discuss that a detailed understanding of the exact phase diagram shape including the composition dependent width of the coexistence region will need an extended theoretical treatment.Comment: 25 pages, 4 figure
    corecore