20 research outputs found

    Electrification Planning for Healthcare Facilities in Low-Income Countries, Application of a Portfolio-Level, Multi Criteria Decision-Making Approach

    No full text
    This study presents a multi-platform analysis for accelerating the deployment of distributed renewable energy (DRE) systems for the electrification of healthcare facilities (HCFs) in low-income regions. While existing tools capture national and regional scale planning for DRE deployment in HCFs, there are limited tools for facility level energy needs and no existing data-driven approach for systematic decision-making and resource allocation across a portfolio of HCFs. We address this gap by utilizing decentralized data collection, and multi-criteria decision-making to evaluate each HCF against a set of weighted decision criteria. We applied the approach presented in this research in a case study across 56 HCF in Uganda. Results present current and future energy needs for each individual clinic and the prioritization of HCFs for allocation of resources for DRE deployment. Additionally, results provide insight for best practices for reliability of services that are specific to each HCF. For example, failures in the existing solar photovoltaic (PV) systems are approximately up to 60% due to a lack of proper operation and management (O&M) strategy, and 40% is attributable to improper system design and installation. Thus, this study enables decision-makers to better understand the electrification needs of different HCFs, prioritize DRE deployment, financial investments, cost-effective procurement, and long-term O&M

    FIGURE 1. DECISION MAKING THEORIES IN BOTH HEALTH RELATED BEHAVIORS AND ENVIRONMENTAL BEHAVIORS

    No full text
    <p>FIGURE 1. DECISION MAKING THEORIES IN BOTH HEALTH RELATED BEHAVIORS AND ENVIRONMENTAL BEHAVIORS</p

    Comparison of adjuvant activity of N- and C-terminal domain of gp96 in a Her2-positive breast cancer model

    No full text
    It has been frequently reported that gp96 acts as a strong biologic adjuvant. Some studies have even investigated adjuvant activity of the gp96 C- or N-terminal domain. The controversy surrounding adjuvant activity of gp96 terminal domains prompted us to compare adjuvant activity of gp96 C- or N-terminal domain toward Her2/neu, as DNA vaccine in a Her2/neu-positive breast cancer model. To do so, mice were immunized with DNA vaccine consisting of transmembrane and extracellular domain (TM + ECD) of rat Her2/neu alone or fused to N- or C-terminal domain of gp96. Treatment with Her2/neu fused to N-terminal domain of gp96 resulted in tumor progression, compared to the groups vaccinated with pCT/Her2 or pHer2. Immunological examination revealed that treatment with Her2/neu fused to N-terminal domain of gp96 led to significantly lower survival rates, higher interferon-γ secretion, and induced infiltration of CD4+/CD8+ cells to the tumor site. However, it could not induce cytotoxic T lymphocyte activity, did not decrease regulatory T cell percentage at the tumor site, and eventually led to tumor progression. Our results reveal that gp96 N-terminal domain does not have adjuvant activity toward Her2/neu. It is also proposed that adjuvant activity and the resultant immune response of gp96 terminal domains may be directed by the antigen applied

    Adjuvant activity of GP96 C-terminal domain towards Her2/neu DNA vaccine is fusion direction-dependent

    No full text
    The Her2 is one of tumor-associated antigens (TAA), regarded as an ideal target of immunotherapy. DNA encoding full-length or truncated rat Her2/neu have shown protective and therapeutics potentials against Her2/neu-expressing mammary tumors. However, the efficacy of active vaccination is limited since Her2 is a self-tolerated antigen. Hence, new strategies are required to enhance both the quality and quantity of the immune response against Her2-expressing tumors. Many studies have used Her2/neu gene with cytokine or other molecules involved in regulation of immune response to enhance the potency of Her2/neu DNA vaccines. Some studies fused adjuvant gene to C-terminal domain of Her2/neu gene, while others fused the adjuvant gene N-terminally to Her2/neu gene, but no comparison on how direction of fusion could affect efficiency of DNA vaccine has ever been made. Based on previous reports demonstrating potent adjuvant activity of gp96 C-terminal domain, we chose it as adjuvant. The aim of this study was to investigate if direction of fusion could affect adjuvant activity of gp96 C-terminal domain or potency of Her2/neu DNA vaccination. To do so, we fused C-terminal domain of gp96 to downstream or C-terminal end of transmembrane and extracellular domain (TM+ECD) of rat Her2/neu and resultant immune response to DNA vaccination was evaluated. The results were compared with that of N-terminally fusion of gp96 C-terminal domain to TM+ECD of rat Her2/neu. Our results revealed that adjuvant activity of gp96 C-terminal domain is enhanced when fused N-terminally to TM+ECD of rat Her2/neu. It suggests that adjuvant activity of gp96 C-terminal domain towards Her2/neu is fusion direction-dependent

    CYP1B1 Mutation Profile of Iranian Primary Congenital Glaucoma Patients and Associated Haplotypes

    Get PDF
    The mutation spectrum of CYP1B1 among 104 primary congenital glaucoma patients of the genetically heterogeneous Iranian population was investigated by sequencing. We also determined intragenic single nucleotide polymorphism (SNP) haplotypes associated with the mutations and compared these with haplotypes of other populations. Finally, the frequency distribution of the haplotypes was compared among primary congenital glaucoma patients with and without CYP1B1 mutations and normal controls. Genotype classification of six high-frequency SNPs was performed using the PHASE 2.0 software. CYP1B1 mutations in the Iranian patients were very heterogeneous. Nineteen nonconservative mutations associated with disease, and 10 variations not associated with disease were identified. Ten mutations and three variations not associated with disease were novel. The 13 novel variations make a notable contribution to the ∼70 known variations in the gene. CYP1B1 mutations were identified in 70% of the patients. The four most common mutations were G61E, R368H, R390H, and R469W, which together constituted 76.2% of the CYP1B1 mutated alleles found. Six unique core SNP haplotypes were identified, four of which were common to the patients with and without CYP1B1 mutations and controls studied. Three SNP blocks determined the haplotypes. Comparison of haplotypes with those of other populations suggests a common origin for many of the mutations
    corecore