3 research outputs found

    A 50 l CYGNO prototype overground characterization

    Get PDF
    The nature of dark matter is still unknown and an experimental program to look for dark matter particles in our Galaxy should extend its sensitivity to light particles in the GeV mass range and exploit the directional information of the DM particle motion (Vahsen et al. in CYGNUS: feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, arXiv:2008.12587, 2020). The CYGNO project is studying a gaseous time projection chamber operated at atmospheric pressure with a Gas Electron Multiplier (Sauli in Nucl Instrum Meth A 386:531, https://doi.org/10.1016/S0168-9002(96)01172-2, 1997) amplification and with an optical readout as a promising technology for light dark matter and directional searches. In this paper we describe the operation of a 50 l prototype named LIME (Long Imaging ModulE) in an overground location at Laboratori Nazionali di Frascati (LNF) of INFN. This prototype employs the technology under study for the 1 cubic meter CYGNO demonstrator to be installed at the Laboratori Nazionali del Gran Sasso (LNGS) (Amaro et al. in Instruments 2022, 6(1), https://www.mdpi.com/2410-390X/6/1/6, 2022). We report the characterization of LIME with photon sources in the energy range from few keV to several tens of keV to understand the performance of the energy reconstruction of the emitted electron. We achieved a low energy threshold of few keV and an energy resolution over the whole energy range of 10–20%, while operating the detector for several weeks continuously with very high operational efficiency. The energy spectrum of the reconstructed electrons is then reported and will be the basis to identify radio-contaminants of the LIME materials to be removed for future CYGNO detectors

    The CYGNO experiment

    No full text
    The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, a detector sensitive to incoming particle direction will be crucial in the case of DM discovery to open the possibility of studying its properties. Gaseous time projection chambers (TPC) with optical readout are very promising detectors combining the detailed event information provided by the TPC technique with the high sensitivity and granularity of latest-generation scientific light sensors. The CYGNO experiment (a CYGNus module with Optical readout) aims to exploit the optical readout approach of multiple-GEM structures in large volume TPCs for the study of rare events as interactions of low-mass DM or solar neutrinos. The combined use of high-granularity sCMOS cameras and fast light sensors allows the reconstruction of the 3D direction of the tracks, offering good energy resolution and very high sensitivity in the few keV energy range, together with a very good particle identification useful for distinguishing nuclear recoils from electronic recoils. This experiment is part of the CYGNUS proto-collaboration, which aims at constructing a network of underground observatories for directional DM search. A one cubic meter demonstrator is expected to be built in 2022/23 aiming at a larger scale apparatus (30 m3–100 m3) at a later stage

    The CYGNO experiment: a directional Dark Matter detector with optical readout

    Get PDF
    We are going to discuss the R&D and the prospects for the CYGNO project, towards the development of an innovative, high precision 3D tracking Time Projection Chamber with optical readout using He:CF4 gas at 1 bar. CYGNO uses a stack of triple thin GEMs for charge multiplication, this induces scintillation in CF4 gas, which is readout by PMTs and sCMOS cameras. High granularity and low readout noise of sCMOS along with high sampling of PMT allows CYGNO to have 3D tracking with head tail capability and particle identification down to O(keV) energy for directional Dark Matter searches and solar neutrino spectroscopy. We will present the most recent R&D results from the CYGNO project, and in particular the overground commissioning of the largest prototype developed so far, LIME with a 33×33 cm2 readout plane and 50 cm of drift length, for a total of 50 litres active volume. We will illustrate the LIME response characterisation between 3.7 keV and 44 keV by means of multiple X-ray sources, and the data Monte-Carlo comparison of simulated sCMOS images in this energy range. Furthermore, we will present current LIME installation, operation and data taking at underground Laboratori Nazionali del Gran Sasso (LNGS), serving as demonstrator for the development of a 0.4 m3 CYGNO detector. We will conclude by mentioning the technical choices and the prospects of the 0.4 m3 detector, as laid out in the Technical Design Report (TDR) recently produced by our collaboration
    corecore