92 research outputs found

    Inducible mutant huntingtin expression in HN10 cells reproduces Huntington's disease-like neuronal dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expansion of a polyglutamine repeat at the amino-terminus of huntingtin is the probable cause for Huntington's disease, a lethal progressive autosomal-dominant neurodegenerative disorders characterized by impaired motor performance and severe brain atrophy. The expanded polyglutamine repeat changes the conformation of huntingtin and initiates a range of pathogenic mechanisms in neurons including intracellular huntingtin aggregates, transcriptional dysregulation, energy metabolism deficits, synaptic dystrophy and ultimately neurodegeneration. It is unclear how these events relate to each other or if they can be reversed by pharmacological intervention. Here, we describe neuronal cell lines expressing inducible fragments of normal and mutant huntingtin.</p> <p>Results</p> <p>In HN10 cells, the expression of wild type and mutant huntingtin fragments was dependent on the induction time as well as on the concentration of the RheoSwitch<sup>® </sup>inducing ligand. In order to analyze the effect of mutant huntingtin expression on cellular functions we concentrated on the 72Q exon1 huntingtin expressing cell line and found that upon induction, it was possible to carefully dissect mutant huntingtin-induced phenotypes as they developed over time. Dysregulation of transcription as a result of mutant huntingtin expression showed a transcription signature replicating that reported in animal models and Huntington's disease patients. Crucially, triggering of neuronal differentiation in mutant huntingtin expressing cell resulted in the appearance of additional pathological hallmarks of Huntington's disease including cell death.</p> <p>Conclusion</p> <p>We developed neuronal cell lines with inducible expression of wild type and mutant huntingtin. These new cell lines represent a reliable <it>in vitro </it>system for modeling Huntington's disease and should find wide use for high-throughput screening application and for investigating the biology of mutant huntingtin.</p

    β-site specific intrabodies to decrease and prevent generation of Alzheimer's Aβ peptide

    Get PDF
    Endoproteolysis of the β-amyloid precursor protein (APP) by β- and γ-secretases generates the toxic amyloid β-peptide (Aβ), which accumulates in the brain of Alzheimer's disease (AD) patients. Here, we established a novel approach to regulate production of Aβ based on intracellular expression of single chain antibodies (intrabodies) raised to an epitope adjacent to the β-secretase cleavage site of human APP. The intrabodies rapidly associated, within the endoplasmic reticulum (ER), with newly synthesized APP. One intrabody remained associated during APP transport along the secretory line, shielded the β-secretase cleavage site and facilitated the alternative, innocuous cleavage operated by α-secretase. Another killer intrabody with an ER retention sequence triggered APP disposal from the ER. The first intrabody drastically inhibited and the second almost abolished generation of Aβ. Intrabodies association with specific substrates rather than with enzymes, may modulate intracellular processes linked to disease with highest specificity and may become instrumental to investigate molecular mechanisms of cellular events

    Phosphorylation of nuclear Tau is modulated by distinct cellular pathways

    Get PDF
    Post-translational protein modification controls the function of Tau as a scaffold protein linking a variety of molecular partners. This is most studied in the context of microtubules, where Tau regulates their stability as well as the distribution of cellular components to defined compartments. However, Tau is also located in the cell nucleus; and is found to protect DNA. Quantitative assessment of Tau modification in the nucleus when compared to the cytosol may elucidate how subcellular distribution and function of Tau is regulated. We undertook an unbiased approach by combing bimolecular fluorescent complementation and mass spectrometry in order to show that Tau phosphorylation at specific residues is increased in the nucleus of proliferating pluripotent neuronal C17.2 and neuroblastoma\ua0SY5Y cells. These findings were validated with the use of nuclear targeted Tau and subcellular fractionation, in particular for the phosphorylation at T181, T212 and S404. We also report that the DNA damaging drug Etoposide increases the translocation of Tau to the nucleus whilst reducing its phosphorylation. We propose that overt phosphorylation of Tau, a hallmark of neurodegenerative disorders defined as tauopathies, may negatively regulate the function of nuclear Tau in protecting against DNA damage

    Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER

    Get PDF
    BACE457 is a recently identified pancreatic isoform of human β-secretase. We report that this membrane glycoprotein and its soluble variant are characterized by inefficient folding in the ER, leading to proteasome-mediated ER-associated degradation (ERAD). Dissection of the degradation process revealed that upon release from calnexin, extensively oxidized BACE457 transiently entered in disulfide-bonded complexes associated with the lumenal chaperones BiP and protein disulfide isomerase (PDI) before unfolding and dislocation into the cytosol for degradation. BACE457 and its lumenal variant accumulated in disulfide-bonded complexes, in the ER lumen, also when protein degradation was inhibited. The complexes were disassembled and the misfolded polypeptides were cleared from the ER upon reactivation of the degradation machinery. Our data offer new insights into the mechanism of ERAD by showing a sequential involvement of the calnexin and BiP/PDI chaperone systems. We report the unexpected transient formation of covalent complexes in the ER lumen during the ERAD process, and we show that PDI participates as an oxidoreductase and a redox-driven chaperone in the preparation of proteins for degradation from the mammalian ER

    ER-mitochondria contacts and cholesterol metabolism are disrupted by disease-associated tau protein

    Get PDF
    Abnormal tau protein impairs mitochondrial function, including transport, dynamics, and bioenergetics. Mitochondria interact with the endoplasmic reticulum (ER) via mitochondria-associated ER membranes (MAMs), which coordinate and modulate many cellular functions, including mitochondrial cholesterol metabolism. Here, we show that abnormal tau loosens the association between the ER and mitochondria in vivo and in vitro. Especially, ER-mitochondria interactions via vesicle-associated membrane protein-associated protein (VAPB)-protein tyrosine phosphatase-interacting protein 51 (PTPIP51) are decreased in the presence of abnormal tau. Disruption of MAMs in cells with abnormal tau alters the levels of mitochondrial cholesterol and pregnenolone, indicating that conversion of cholesterol into pregnenolone is impaired. Opposite effects are observed in the absence of tau. Besides, targeted metabolomics reveals overall alterations in cholesterol-related metabolites by tau. The inhibition of GSK3β decreases abnormal tau hyperphosphorylation and increases VAPB-PTPIP51 interactions, restoring mitochondrial cholesterol and pregnenolone levels. This study is the first to highlight a link between tau-induced impairments in the ER-mitochondria interaction and cholesterol metabolism

    Suppression of protein aggregation by chaperone modification of high molecular weight complexes

    Get PDF
    Protein misfolding and aggregation are associated with many neurodegenerative diseases, including Huntington's disease. The cellular machinery for maintaining proteostasis includes molecular chaperones that facilitate protein folding and reduce proteotoxicity. Increasing the protein folding capacity of cells through manipulation of DNAJ chaperones has been shown to suppress aggregation and ameliorate polyglutamine toxicity in cells and flies. However, to date these promising findings have not been translated to mammalian models of disease. To address this issue, we developed transgenic mice that over-express the neuronal chaperone HSJ1a (DNAJB2a) and crossed them with the R6/2 mouse model of Huntington's disease. Over-expression of HSJ1a significantly reduced mutant huntingtin aggregation and enhanced solubility. Surprisingly, this was mediated through specific association with K63 ubiquitylated, detergent insoluble, higher order mutant huntingtin assemblies that decreased their ability to nucleate further aggregation. This was dependent on HSJ1a client binding ability, ubiquitin interaction and functional co-operation with HSP70. Importantly, these changes in mutant huntingtin solubility and aggregation led to improved neurological performance in R6/2 mice. These data reveal that prevention of further aggregation of detergent insoluble mutant huntingtin is an additional level of quality control for late stage chaperone-mediated neuroprotection. Furthermore, our findings represent an important proof of principle that DNAJ manipulation is a valid therapeutic approach for intervention in Huntington's diseas

    Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells

    Get PDF
    Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer’s disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation.Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells.Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells.Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging

    The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD.</p> <p>Results</p> <p>Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels.</p> <p>Conclusions</p> <p>Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.</p

    Whole‐brain microscopy reveals distinct temporal and spatial efficacy of anti‐Aβ therapies

    Full text link
    Many efforts targeting amyloid-β (Aβ) plaques for the treatment of Alzheimer's Disease thus far have resulted in failures during clinical trials. Regional and temporal heterogeneity of efficacy and dependence on plaque maturity may have contributed to these disappointing outcomes. In this study, we mapped the regional and temporal specificity of various anti-Aβ treatments through high-resolution light-sheet imaging of electrophoretically cleared brains. We assessed the effect on amyloid plaque formation and growth in Thy1-APP/PS1 mice subjected to β-secretase inhibitors, polythiophenes, or anti-Aβ antibodies. Each treatment showed unique spatiotemporal Aβ clearance, with polythiophenes emerging as a potent anti-Aβ compound. Furthermore, aligning with a spatial-transcriptomic atlas revealed transcripts that correlate with the efficacy of each Aβ therapy. As observed in this study, there is a striking dependence of specific treatments on the location and maturity of Aβ plaques. This may also contribute to the clinical trial failures of Aβ-therapies, suggesting that combinatorial regimens may be significantly more effective in clearing amyloid deposition. Keywords: Alzheimer's disease; amyloid-beta; brain; light-sheet microscopy; tissue clearin
    corecore