277 research outputs found

    Software Defined Radio for NB-IoT

    Get PDF
    The next generation of mobile radio systems is expected to providing wireless connectivity for a wide range of new applications and services involving not only people but also machines and objects. Within few years, billions of low-cost and low-complexity devices and sensors will be connected to the Internet, forming a converged ecosystem called Internet of Things (IoT). As a result, in 2016, 3GPP standardizes NB-IoT, the new narrowband radio technology developed for the IoT market. Massive connectivity, reduced UE complexity, coverage extension and deployment flexibility are the targets for this new radio interface, which also ensures harmonious coexistence with current GSM, GPRS and LTE systems. In parallel, the rise of open-source software combined with Software Defined Radio (SDR) solutions has completely changed radio systems engineering in the late years. This thesis focuses on developing the NB-IoT’s protocol stack on the EURECOM’s open-source software platform OpenAirInterface (OAI). First part of this work aims to implement NB-IoT’s Radio Resource Control functionalities on OAI. After an introduction to the platform architecture, a new RRC layer code structure and related interfaces are defined, along with a new approach for Signalling Radio Bearers management. A deep analysis on System Information scheduling is conducted and a subframe-based transmission scheme is then proposed. The last part of this thesis addresses the implementation of a multi-vendor platform interface based on Small Cell Forum’s Functional Application Platform Interface (FAPI) standard. A configurable and dynamically loadable Interface Module (IF-Module) is designed between OAI’s MAC and PHY layers. Primitives and related code structures are presented as well as corresponding Data and Configuration’s procedures. Finally, the convergence of both NB-IoT and FAPI requirements lead to re-design PHY layer mechanisms for which a downlink transmission scheme is proposed

    The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the <it>lys</it>, <it>arg </it>and <it>leu </it>genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution.</p> <p>Results</p> <p>The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted.</p> <p>Conclusion</p> <p>The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single common metabolic pathway, whose genes underwent a set of duplication events, most of which can have predated the appearance of the last common universal ancestor of the three cell domains (Archaea, Bacteria, and Eucaryotes). The model proposes a relative timing for the appearance of the three routes and also suggests a possible evolutionary pathway for the assembly of bacterial cell-wall.</p

    Tolerance of Populus alba to ultraviolet&#8211;b radiation

    Get PDF

    Inferences on the Nature of a Cr(V) or Cr(IV) Species Formed by Reduction of Dichromate by a Bovine Liver Homogenate: NMR and Mass-Spectrometric Studies

    Get PDF
    A low-molecular weight chromium-containing fraction of the material resulting from dichromate reduction by bovine liver homogenate was investigated by NMR and ES-MS. The ES-MS spectrum showed a readily detectable peak at m/z = 786.1. The same molecular weight reasonably agreed with the relatively low diffusion coefficient measured by NMR-DOSY experiments on the main species observed in the 1H NMR spectrum. At least two downfield shifted and broad paramagnetic signals were apparent in the 1H NMR spectrum. Temperature dependence of chemical shift was exploited in order to estimate the diamagnetic shift of the signals in the diamagnetic region of the spectrum. 2D TOCSY, NOESY, COSY and 1H-3C HMQC spectra revealed the presence of aromatic protons (which were assigned as His residues), Gly and some other short chain amino-acids. Combinations of the molecular masses of such components together with acetate (which is present in the solution) and chromium atoms allowed a tentative proposal of a model for the compound
    • …
    corecore