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Abstract

The next generation of mobile radio systems is expected to providing wireless connectivity
for a wide range of new applications and services involving not only people but also machines
and objects. Within few years, billions of low-cost and low-complexity devices and sensors
will be connected to the Internet, forming a converged ecosystem called Internet of Things
(IoT). As a result, in 2016, 3GPP standardizes NB-IoT, the new narrowband radio technol-
ogy developed for the IoT market. Massive connectivity, reduced UE complexity, coverage
extension and deployment flexibility are the targets for this new radio interface, which also
ensures harmonious coexistence with current GSM, GPRS and LTE systems. In parallel, the
rise of open-source software combined with Software Defined Radio (SDR) solutions has com-
pletely changed radio systems engineering in the late years. These platforms provide testbed
for experimental analysis and prototype development enabling researchers to test, validate
and assess the performance of new technologies for wireless networks. This thesis focuses on
developing the NB-IoT’s protocol stack on the EURECOM’s open-source software platform
OpenAirInterface (OAI). First part of this work aims to implement NB-IoT’s Radio Resource
Control functionalities on OAI. After an introduction to the platform architecture, a new
RRC layer code structure and related interfaces are defined, along with a new approach for
Signalling Radio Bearers management. A deep analysis on System Information scheduling is
conducted and a subframe-based transmission scheme is then proposed. The last part of this
thesis addresses the implementation of a multi-vendor platform interface based on Small Cell
Forum’s Functional Application Platform Interface (FAPI) standard. A configurable and dy-
namically loadable Interface Module (IF-Module) is designed between OAI’s MAC and PHY
layers. Primitives and related code structures are presented as well as corresponding Data
and Configuration’s procedures. Finally, the convergence of both NB-IoT and FAPI require-
ments lead to re-design PHY layer mechanisms for which a downlink transmission scheme is
proposed.
This work constitutes a precious starting point to ensure OpenAirInterface interoperability,
flexibility and IoT capabilities to face the next generation of mobile radio technology.

This Master thesis project is conducted in collaboration with the Communication Systems
Department of EURECOM, a France research institute based in Sophia Antipolis.
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Chapter 1

Introduction

Long Term Evolution (LTE) is the standard name indicating the mobile system technology
developed by the 3rd Generation Partnership Project (3GPP) and released for the first time
in 2008. LTE evolved from the previous quite old 3GPP system known as Universal Mobile
Telecommunication System (UMTS) with the aim of increasing cellular network capabilities
towards achieving the fourth generation (4G) of mobile systems. Among all the early targets
and requirements, the most essential aspects for LTE have been a strong demand for higher
data rates, in addition to top Quality of Service (QoS), low latency, scalability and cost
reduction thanks to considerably low design complexity. Nowadays, LTE is the most prevalent
and successful mobile communication technology worldwide. It has reached a maturity level
that not only addresses enhanced functionalities but also the support for new use cases [1],
becoming an essential piece for the next generation of mobile networks, i.e 5G.

The fifth-generation (5G) of mobile radio systems will be driven by an increase in mobile
traffic demand and it will provide wireless connectivity for a wide range of new applications
and services involving ultra-reliability, Enhanced Mobile Broadband (eMBB) and Massive
Machine Type Communication (mMTC). The latter, will play a fundamental role in the
Internet of Things (IoT) scenario in which billions of low-cost and low-complexity devices
and sensors will be connected to the Internet. For this reason, 3GPP has taken evolutionary
steps on both the network and device side of its cellular radio technology to meet the new
connectivity requirements of the emerging massive IoT segment. As a result, a new family
of LPWA technologies has been standardized including Extended Coverage GSM (EC-GSM),
LTE-M (or eMTC) and Narrowband Internet of Things (NB-IoT). The latter, is the new
3GPP solution addressing ultra-low-end IoT applications and constitutes the radio interface
on which this Master thesis focuses.

NB-IoT shows cost, deployment flexibility and deep coverage advantages over other IoT solu-
tions by scaling down to extreme device simplicity and allowing harmonious coexistence with
current cellular technologies. These performance objectives have led to a new system design
for both Access and Core network parts. In particular, the radio protocol architecture has
been primarily revolutionized at Physical (PHY) and Radio Resource Control (RRC) layer,
with minor changes also for Packet Data Convergence Protocol (PDCP), Radio Link Control
(RLC) and Medium Access Control (MAC).

Parallel to this, the rise of modern wireless transmissions based on Software Defined Radio
(SDR) solutions has completely changed radio systems engineering. Many radio components
are implemented in software and can be reconfigured on-the-fly, thus allowing a single piece
of hardware for multi-standard, multi-band and multi-functional wireless systems [12]. Such
paradigm change has converged the cellular systems from slow-moving proprietary and ex-
pensive hardware platforms towards open-source ecosystems with several benefits in terms of
cost, time and flexibility. Moreover, the telecommunication industry has been transformed in

1



1. Introduction

recent years by the emergence of open-source mobile communication software. A number of
companies, universities and research institutes have started developing open-source projects
combining open software with SDR solutions, to make trial environments to test the newest
generation of mobile communication architecture and equipment.

This is the case of OpenAirInterface (OAI), an open-source platform developed by the EU-
RECOM research institute as an open and flexible framework for implementing standard-
compliant experimental mobile radio systems. OAI is considered one of the first open-source
SDR implementation of LTE, spanning the full protocol stack both in E-UTRAN and EPC. It
can be used to build and customize an eNodeB base station and core network on commodity
PC and connect commercial UEs to test and monitor the network and mobile devices in real
time. EURECOM believes that OpenAirInterface can be instrumental for the development of
key 5G technologies [13]. In particular, its latest research directions are addressing IoT require-
ments for future design of cellular networks by bringing NB-IoT and LTE-M functionalities
into OpenAirInterface. This is the context in which this Master project fits, by contributing
to the development of NB-IoT protocol stack on the OAI eNodeB.

In addition, a key target for future mobile radio networks is to achieve interoperability. A
multi-vendor, virtualized and heterogeneous network is the vision that mobile operators have
of their next generation deployments [14]. In this scenario, the standardization of a common
architecture in which parts are interchangeable and ensure the latest hardware and software
innovation with minimum barriers, is fundamental. The goal of interoperability has been
central to the Small Cell Forum’s work which has standardized multi-vendor Application
Platform Interfaces (APIs) such as the Functional API (FAPI) and Network Functional API
(nFAPI) to ensure an unified framework which allows small cell from different vendors to work
together seamlessly. This approach has not escaped to the research community in EURECOM
which has quickly started to bring FAPI/nFAPI functionalities into OpenAirInterface. Also in
this case, open software solutions like CISCO’s “open-nFAPI” [15] have proven to be a useful
tool for supporting the MAC/PHY split foreseen by the Small Cell Forum’s standards.

1.1 Objectives
This Master thesis project is conducted in collaboration with the Communication Systems
Department of EURECOM, a France research institute based in Sophia Antipolis.

The main focus of this work is to develop the Narrowband Internet of Things (NB-IoT)
protocol stack over the open-source platform OpenAirInterface (OAI). In particular, the major
contributions are the design and implementation of Radio Resource Control (RRC) layer,
along with the adoption of a multi-vendor platform interface compatible with Small Cell
Forum’s FAPI standard.

NB-IoT is the new 3GPP radio technology developed for the Internet of Things (IoT), tar-
geted for massive connectivity, reduced UE complexity, coverage extension and deployment
flexibility. To the best of our knowledge, no free open-source project like OpenAirInterface is
addressing the implementation of a NB-IoT compatible eNodeB base station. Bringing IoT
functionalities into this open platform not only provides a testbed for prototype validation
and performance evaluation but accelerates innovation for the next generation of mobile radio
systems (5G).

The starting point of this thesis is the investigation and analysis of OAI software, providing
insights on procedures and mechanisms of RRC layer code along with some knowledges on
PHY. The top-level approach adopted on describing layers processes, primitives classification
and data structures, constitutes a valuable tool to address the lack of currently update docu-
mentation on OpenAirInterface’s protocol.
To meet NB-IoT requirements, RRC functionalities and related procedures at eNodeB side of

2



1.2. Outline

OpenAirInterface are re-designed. The original layer’s working principles are not modified but
we account for different message types, reduced functionalities and underlying Information
Elements (IEs) introduced by the new technology. This leads to outline a new RRC code
structure and re-define primitives for configuration and data exchange with other protocol
entities.
For this project, NB-IoT bearer management represents one challenging task. The 3GPP
standard introduces a new Signalling Radio Bearer (SRB), called SRB1bis, established im-
plicitly with the legacy SRB1 but utilized before security activation, i.e. bypassing PDCP.
The developed approach exploits Logical Channel Identity (LCID) to differentiate between
SRB1bis and SRB1 allowing related PDCP layer configuration. Moreover, key point in this
case is the received UE message after which SRB1bis translates into SRB1 without requiring
additional configurations from eNodeB.
In addition, the “NPDCCH less” approach introduced by NB-IoT for System Information
(SI) scheduling revolutionizes the radio resource mapping. Some considerations on required
upgrades for OAI’s MAC scheduler are given, justifying the need of new frame checking algo-
rithms and new input parameters. Furthermore, a possible scheduling approach is proposed
which optimizes the number of subframes available for those radio frames dedicated to SI
transmissions.

Finally, the implementation of a multi-vendor platform interface based on FAPI standard is
addressed. The flexibility enabled by this solution is achieved by the definition of a suitable
split point between OAI’s MAC and PHY layer along with related messages and procedures.
To achieve this, a configurable and dynamically loadable Interface Module is developed, which
provides FAPI-like primitives for both data and configurations. However, the introduction of
such Module compliant with NB-IoT specifications requires a rethink of PHY layer mecha-
nisms of which a new design is provided with specific details on downlink transmission.

1.2 Outline
The thesis work is structured as follow:

Chapter 2 provides some backgrounds on different topics. It introduces the IoT concept
and related 3GPP cellular solutions. It describes the Software Defined Radio paradigm and
gives insight into OpenAirInterface, the reference open-source platform of this thesis. For the
latter, both software and hardware perspective is given. A brief survey on ASN.1 description
language is also available, useful for clearer understanding of addressed topics. Finally, the
chapter provides an in-depth analysis of NB-IoT radio technology, focusing on major changes
introduced by the standard at PHY and RRC layer.

Chapter 3 describes the multi-vendor platform interfaces FAPI and nFAPI released by Small
Cell Forum, focusing on downlink FAPI procedures related to NB-IoT.

The next two chapters describe the given open-source system and related improvements. Chap-
ter 4 addresses the initial characterization, providing a general overview of OpenAirInterface
software architecture with details on RRC and PHY layer code. Chapter 5 reports all the
improvements and followed approaches to develop the NB-IoT protocol stack, along with the
introduction of a FAPI-compliant interface between PHY and MAC.

Finally, Chapter 6 summarizes major considerations on the developed work and proposes
future works.
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Chapter 2

Background

This Master thesis is written assuming the reader has knowledge of the field of mobile radio
systems. In particular, an adequate background on the 3GPP Long Term Evolution (LTE)
standard is required to fully understand topics addressed in this and the following chapters.
If that is not the case, [16] and [17] are recommended as valid support to fill knowledge gaps
on LTE technology during the reading, in particular about Radio Resource Control (RRC)
layer and some Physical (PHY) layer procedures.

2.1 Towards IoT

2.1.1 Introduction
Each generation of mobile communication, from the first (1G) introduced in the 1980s, to
the forth (4G) launched in recent years, has had a significant impact on the way people and
businesses operate. The fifth-generation (5G) of mobile radio systems is expected to extend
its capabilities far beyond those of previous ones, providing wireless connectivity for a wide
range of new applications and services involving not only people but also machines, objects
and more general devices. Although the requirements for 5G are still being finalized both in
the ITU and 3GPP, there is a preliminary agreement regarding the three main use cases the
technology must support [1] as illustrated in Figure 2.1:

• Enhanced Mobile Broadband (eMBB): used as a general term referring to the extended
support of conventional MBB technology through improved data rates, capacity and
coverage.

• Ultra-Reliable Low Latency Communication (URLLC): an emerging sector of critical
applications such as infrastructure protection, remote surgery or intelligent transport
systems (ITSs) in which low latency and reliability together with zero mobility interrup-
tion gab are of highest importance.

• Massive Machine Type Communication (mMTC): referring to the envisioned scenario
with billions of low-cost and low-complexity connected devices and sensors.

In particular, mMTC is expected to play a fundamental role within future 5G systems en-
abling a complete implementation of the Internet of Things (IoT) concept. The term “IoT”
refers to information networks where objects (“things”) from diverse environments are mutu-
ally connected into a single large-scale ecosystem based on Internet Protocol (IP) [18]. The
development of IoT will allow smart machines and devices to interact with other objects,
things, environment, infrastructure and humans through the Internet. In this “networked
society”, every person and every industry will be empowered to reach their full potential [19]
exploiting machine-to-machine (M2M) and machine-to-person communications on a massive
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2. Background

Figure 2.1: The three main 5G use cases and examples of associated applications [1].

scale. In the incoming years, it is expected that IoT will shift from vision to reality. Ac-
cording to [20], of the 29 billion connected devices predicted to exist by 2020, 18 billion will
be IoT devices. The potential applications for the Internet of Things run into the millions,
with a huge variety of requirements regarding cost, battery life, coverage, connectivity and
performance (throughput and capacity). Some devices, such as temperature sensors, will be
required to only send a few messages per day while others, for example, may need to transmit
a video stream to guide surgeons during emergency operations. Differences on requirements,
applications, nature and complexity of IoT equipments will directly affect the type of access
technologies needed. According to [19], a large share of IoT devices will be served by short-
range radio Local Area Network (LAN) technologies such as Wi-fi, Bluetooth and Zigbee,
operating in unlicensed spectrum. However, these technologies are designed with limited QoS
and security requirements being mainly applicable for home or indoor environment. On the
other hand, the most attractive solution for IoT connectivity will be enabled by wide-area
coverage technologies for which currently there are two alternatives:

• Unlicensed Low-Power Wide Area Network (LPWAN): proprietary radio technology
solutions designed to address long-range and low-power communications for MTC ap-
plications. Most prominent standard in this sector are LoRaWAN [21] and Sigfox [22].

• Cellular technologies: 3GPP solutions like GSM, LTE and future 5G that are being
rapidly evolved with new functionalities and new radio access technologies. These, are
specifically tailored for emerging LPWA applications and able to addressing everything
from Massive to Critical IoT use cases.

2.1.2 LTE Evolution towards IoT: eMTC and NB-IoT
Future 5G networks will not be based on one specific radio-access technology. Rather, they
will be realized by a portfolio of access and connectivity solutions [23]. As the most prevalent
mobile communication technology worldwide, LTE constitutes an essential piece of the final
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5G puzzle [1]. As such, its latest releases are intended to meet requirements and address
the relevant use cases expected in the 5G era. In particular, in Rel.12 and mainly in Rel.13,
3GPP has taken evolutionary steps on both the network and device side to meet the new
connectivity requirements of the emerging Massive IoT segment [19]. Key improvement areas
address reduction of device cost, enhanced UE coverage, longer battery life and support for
massive number of IoT connections. As a result, in the late years a new family of LPWA
technologies have been standardized including Extended Coverage GSM (EC-GSM), LTE-M
(or eMTC) and Narrowband Internet of Things (NB-IoT).

EC-GSM, is the result of 3GPP initiative to further improve GSM, boosting coverage up to
20dB with respect to GPRS on the 900 MHz band [19]. However, the flat and flexible archi-
tecture of LTE as well as its more efficient signalling, higher performance and lower operating
costs have moved the attention to other two solutions: LTE-M and NB-IoT.
LTE-M and NB-IoT have been introduced with 3GPP LTE Release 13 as a suit of com-
plementary narrowband LTE IoT technologies both optimized for low complexity, low power
and high density device deployment. They offer similar improvements with regard to coverage
enhancement, battery life, signalling efficiency and scalability, but address slightly different
demands in terms of flexibility and performance [1].
LTE-M or eMTC, is the pure LTE solution brought into 3GPP Rel.13 as a first step in address-
ing mMTC capability over LTE. It continues the optimization already done in Rel. 12 (UE
Cat-0) with the introduction of the new UE category: Cat-M1. It brings new power-saving
functionalities and mechanisms for substantially reduced device cost and extend coverage.
Moreover, it can deliver up to 1 Mbps of throughput utilizing just 1.4 MHz of bandwidth.
In addition, 3GPP Rel.13 introduces Narrowband-IoT (NB-IoT), a new radio technology ad-
dressing ultra-low-end IoT applications. It is tightly connected with LTE providing higher
deployment flexibility with cost advantages over LTE-M. It scales down to extreme simplic-
ity on devices with self-contained carrier of 200 KHz bandwidth and ultra-low-throughput
(about 200 kbps). NB-IoT constitutes the main focus of this Master thesis project and a
deeper analysis of its standard features will be presented in section 2.5.

Figure 2.2 shows a comparison of 3GPP solutions starting from the first LTE Rel. 8 (Cat-1),
up to the latest access technologies for addressing IoT market.

Figure 2.2: 3GPP technology evolution for the Internet of Things [2].

Beyond 3GPP Rel.13, there is a rich roadmap of LTE IoT technology inventions that will
deliver many further enhancements to meet tomorrow’s massive IoT connectivity needs [24].
The completion of Release 14 will bring new capabilities such as single-cell multicast, enhanced
reference signals for positioning applications, larger channel bandwidth for LTE-M (up to 5
MHz) and support for lower NB-IoT power classes [1].
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2.2 Software Defined Radio
As every aspect of our lives becomes connected via smart devices, new digital business op-
portunities arise and evolve, as well communication technologies require further interoperable
flexible systems. In the future, smart technology software will be adapted to meet changing
needs and in this scenario a fundamental role will be played by the concept of Software De-
fined Radio (SDR).
The term SDR refers to a radio communication system where components that have been typ-
ically implemented in hardware are instead replaced by means of software-defined functions
on a general-purpose computer or embedded system such as a System-on-Chip (SoC). The
development of SDR systems overcomes the disadvantages of radio hardware that are gener-
ally expensive and heterogeneous, allowing to develop programmable platforms by means of
new class of technologies such as Field Programmable Radio Frequency (FPRF). In an ideal
software-defined radio system, the entire radio function runs on a General-Purpose (GPP)
or Digital Signal (DSP) Processor to achieve a full programmability of the Radio Frequency
(RF) part, and only requires analog-to-digital and digital-to-analog conversions, power ampli-
fiers and antennas [25]. As a result, users can enable the radio to support different wireless
communication protocols by simply configuring the waveform software without necessarily
throwing away the hardware design. Figure 2.3 illustrates the ideal SDR block diagram.

Figure 2.3: Block Diagram of an ideal Software Defined Radio system [3].

In recent years, SDR has grown to the point where it can be incorporated into different sys-
tems such as Wi-Fi routers, TVs, laptops and wireless sensor technologies. Not least, the
tremendous flexibility and cost effectiveness of SDR made it a key implementation technol-
ogy for the infrastructure component of cellular systems moving from ossified and expensive
hardware platforms towards open-source software architectures. As SDRs have become more
commonplace, many companies and organizations have developed hardware front-ends, such
as Universal Software Radio Peripheral (USRP), and software toolkit like the open-source
GNU Radio, to help the software-defined radios development. This make realistic to re-
searchers and communities of hackers outside the industry, to access high-end computing
power to prototype their own experimental code developing many of the most relevant mobile
radio standards as open-source solutions. For instance, three of the most relevant are:

• OpenBTS [26]: a Unix application that uses a software radio to implement the GSM
air interface for direct communication with standard 2G GSM handset.

• Amarisoft [27]: a fully software-based LTE Base Station which allows to build a real
4G eNodeB using a standard PC and a low cost software radio front end.

• OpenAirInterface [25]: an open-source software-based implementation of the LTE sys-
tem spanning the full protocol stack of 3GPP standard both in E-UTRAN and EPC.
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2.3 OpenAirInterface
This section gives an introduction of OpenAirInterface and describes it as the reference SDR
platform for the work of this Master thesis project. Detailed aspects on the software architec-
ture will be then deepened in chapter 4.

2.3.1 Introduction
The vast majority of current generation of Radio Access Networks (RANs) are based on
proprietary hardware (HW) and software (SW) components that stifle innovation and increase
the cost for operators to deploy and maintain new services and applications in an ever-changing
fast paced cellular network [25]. For this reason, radio systems are converging from a slow-
moving proprietary and expensive HW and SW platforms towards an open cellular ecosystem.
In this context, the emergence of industrial solutions based on free open-source software
running on general purpose processors can greatly simplify network access, improve innovation
speed and accelerate time-to-market for introduction of new services.

In 1998, EURECOM, a Franch based research institute, launched an experimental research
activity for the development of next-generation of wireless communications systems. Through
the years, the initiative evolved towards a free, open and flexible software framework for the
implementation of standard-compliant experimental radio systems that, in 2009, goes under
the name of “OpenAirInterface (OAI)” [25]. Parallel to this, to ensure openness, transparency
and access to all, in 2014 OpenAirInterface has been placed under the responsibility of a French
independent non-profit organization called OpenAirInterface Software Alliance (OSA), with
its headquarters in EURECOM.

The OSA mission is to build a community of academic hackers and major industries that
are embracing the usage of open source for the development of the next generation of mobile
radio systems. As professor Raymond Knopp, co-founder of the OSA, says:
“We would become a very strong voice and maybe even a game changer in the 3GPP world and
we will bring a real impact from the work that we are doing here in EURECOM into 3GPP
systems”
The OSA primary future objective is to provide an open-source reference implementation
which follows the 3GPP standardization process and the evolutionary path from 4G towards
5G systems. This has lead to the establishment of six strategic work areas, including also
the Internet of Things, on which the alliance is currently investing and which are reported in
Figure 2.4.

2.3.2 Platform Architecture
OpenAirInterface is one of the first and most complete open-source software-based implemen-
tation of the 4th generation of mobile radio systems, namely Long Term Evolution (LTE).
It spans the full protocol stack of the 3GPP standard both in Evolved Universal Terrestrial
Radio Access Network (E-UTRAN) and Evolved Packet Core (EPC). OAI currently includes
a standard-compliant implementation of a subset of LTE Release 10 for UE, eNodeB, Mobility
Management Entity (MME), Home Subscriber Server (HSS), Serving Gateway (SGW) and
Packet Data Network Gateway (PGW) [28]. It can be used to build and customize an LTE
base station and core network on a Personal Computer (PC) and connect commercial UEs
to test and monitor the network and the mobile device in real time. Moreover, OAI pro-
vides a rich development environment with a range of build-in tools such as protocol analyser,
emulation options and logging systems for all protocol stack layers and channels [5].
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Figure 2.4: OSA strategic areas [4].

Software

At date, the entire OAI software is hold in the web-based Git repository manager GitLab, with
dedicated wiki and issue tracking features. The OSA’s EPC software is known as openairCN
while the access network software goes under the name of openairinterface5G. OpenAirInter-
face is written in standard C language and released as free software under the terms of version
3 of the GNU General Public License (GPLv3). It works on several real-time Linux variants
optimized for x86 architecture providing UE, eNodeB and core-network functionalities. Fig-
ure 2.5 shows the implemented LTE protocol software architecture of OpenAirInterface.

Figure 2.5: OpenAirInterface LTE software stack [5].

Hardware

OpenAirInterface is based on a PC hosted software radio front end architecture in which
the transceiver functionalities are provided by a software-defined Radio Frequency (RF) front
end connected to a host PC for processing. In particular, OAI is designed to be agnostic
to the hardware RF platforms, allowing to be interfaced with 3rd party SDR RF solutions
without significant effort [25]. For instance, OAI supports the recent Universal Software
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Radio Peripheral (USRP) systems via USRP Hardware Driver (UHD) interface, LimeSDR
as well as some proprietary HW platforms from industrial partners. Figure 2.6 shows the
OpenAirInterface platform architecture for both RAN and EPC.

MME

S/P-GW

HSS

OpenAirInterface

Radio Access Network

Host PC - Core Network

eNodeB

RF Front End 
(USRP, LimeSDR,..)

Host PC - eNodeB

Radio Interface

COTS UE/OAI UE

Uu

S1-U

S6

S1-MME

S11

Figure 2.6: OpenAirInterface platform architecture.

Additionally, the OAI platform can be used in several different configuration involving also
commercial components to varying degrees [5] as listed below.

• Commercial UE ↔ OAI eNB + Commercial EPC.

• Commercial UE ↔ OAI eNB + OAI EPC.

• Commercial UE ↔ Commercial eNB + OAI EPC.

• OAI UE ↔ Commercial eNB + OAI EPC.

• OAI UE ↔ Commercial eNB + Commercial EPC.

• OAI UE ↔ OAI eNB + Commercial EPC.

• OAI UE ↔ OAI eNB + OAI EPC.

2.3.3 The Alliance Project: Narrowband Internet of Things
On April 2017, at the Beijing University of Posts and Telecommunications (BUPT) in Beijing,
People’s Republic of China, the 3rd OpenAirInterface workshop took place. The workshop has
brought together users and developers of OpenAirInterface from both academia and industry
with the aim of sharing the latest developments from the community to the community [25].
Furthermore, the four-day workshop officially marks the start of the OSA’s “Project 5” aiming
for the implementation of the 3GPP standard NB-IoT on OpenAirInterface platform. The
project is directly lead by the EURECOM institute in collaboration with national French
industrial and universities including the University of Bologna (UNIBO). Indeed, this Master
thesis project benefits from the participation of the School of Engineering and Architecture
of Bologna under the OSA’s “Project 5” for the study and the implementation of the NB-IoT
protocol stack on OpenAirInterface.
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2.4 Abstract Syntax Notation
Abstract Syntax Notation One (ASN.1) is an interface description language for defining data
structures that can be serialized and de-serialized in a standard, cross-platform way [29].
Because the language is both human-readable and machine readable, is extensively used in
telecom industry, computer networking and to build up security protocols. Standardization
bodies, like 3GPP, define data structures in ASN.1 modules, which are generally a section of a
broader standard document or specification. These modules can be automatically turned into
libraries for processing of their data structures by an ASN.1 compiler. Moreover, this descrip-
tion language is closely associated with a set of encoding rules that specify how to present the
ASN.1 data structures as a series of bytes during information exchange among communication
systems. Among the others, the Packet Encoding Rules (PER, unaligned: UPER, canonical:
CPER) is the reference Recommendation utilized by many open-source platforms including
OpenAirInterface. In OAI software for instance, a specific directory is defined for contain-
ing the necessary scripts and Makefiles to generate all the LTE configuration data structures
based on the ASN.1 source code. In particular, an exctract_asn1_from_spec.pl script is used
for extracting the “.asn” files from the text version of 3GPP specifications and turn it into
“.c” and “.h” C-based files that can be directly used in the OpenAirInterface code. Figure 2.7
shows a general ASN.1 extraction process.

Figure 2.7: ASN.1 extraction process.

At runtime, the communication between two entities takes place through the usage of a
UPER encoding script for transmission while a UPER-based decoder is used whenever data
are received. This is exemplified in Figure 2.8.

Figure 2.8: Runtime UPER encoding-decoding process.
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2.5 Narrowband Internet of Things (NB-IoT)
On June 2016 the 3GPP completed the standardization of NB-IoT, a new LPWAN technology
for the Internet of Things. NB-IoT is part of 3GPP Rel.13 specification (LTE Advance Pro)
introduced as a new independent radio interface optimized for machine type traffic [6]. It is
not fully backward compatible with existing 3GPP devices [7] though it ensures harmonious
coexistence with current GSM, GPRS and LTE systems. To address key IoT requirements
such as Machine Type Communication (MTC) the NB-IoT standard targets are derived:

– Massive connectivity

– Reduced UE complexity and costs

– Improved power efficiency

– Coverage Extension

– Deployment Flexibility

To fulfil these requisites, many advanced and even basic features of LTE Release 8 and 9 are
not supported [10] while, at the same time, performance objectives led to a new system’s
design for both Access and Core Network at various levels.

First, this section gives an overview on NB-IoT network and radio protocol architecture.
Afterwards, details on Physical and Radio Resource Control layers are discussed focusing on
those aspects that have been investigated during this Master thesis project.

2.5.1 Network Architecture
2.5.1.1 Core Network

NB-IoT it is not just an IoT platform and software upgrade but also the roll-out of new
entities in the Core Network, called Cellular IoT (CIoT) Evolved Packet System (EPS), shown
in Figure 2.9.

Figure 2.9: Core Network for the NB-IoT data transmission and reception. In red, the
Control Plane CIoT EPS optimisation is indicated while in blue the User Plane CIoT EPS
optimisation [6].

The new NB-IoT Core Network offers two major optimizations [30]:

Control Plane CIoT EPS Optimization (Solution 2): is the basic and mandatory so-
lution to support infrequent small data transmission (IP data, non-IP data and SMS)
over Signalling Radio Bearers avoiding the establishment of Data Bearers to save bat-
tery life. Non-IP data may be routed bi-directionally via the new network entity Service
Capability Exposure Function (SCEF) or via SGW/PGW for IP data too.
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User Plane CIoT EPS Optimization (solution 18): is the optional solution to support
infrequent small data transmission (IP data and SMS) with the setup of up to 2 Data
Radio Bearer for connection-oriented sessions.

A NB-IoT UE does not transfer data using both solution at the same time since both will be
never configured by the network together. Instead, selection of which solution to be used is
done between UE and network at Non-Access Stratum (NAS) level.

2.5.1.2 Access Network

From architecture view point, the NB-IoT Access Network has no difference to LTE as shown
in Figure 2.10. The same S1 interface is used for connecting eNodeB to the MME and SGW
and there is still an X2 interface between eNodeBs although no handover procedure is defined.
Moreover, NB-IoT uses same frequency bands numbers as LTE but with a restricted set of 14
bands [31] most of which are in sub-GHz range, reflecting the need to leverage better coverage
performance of UHF frequencies.

Figure 2.10: Network architecture towards the air-interface [6].

2.5.2 NB-IoT Radio Protocol Architecture
To build the NB-IoT protocol layers, 3GPP started with the LTE protocol specification, re-
duced it to a minimum and optimized it as needed for NB-IoT. This way, the proven structures
and procedures are re-used while overhead from unused LTE features is prevented. Conse-
quently, the NB-IoT technology can be regarded as a new air interface also from the protocol
stack view-point, while being built on a well established framework [6]. Figure 2.11 shows the
E-UTRAN protocol stack architecture for NB-IoT highlighting Radio Bearers, logical, trans-
port and physical channels, as well as the main protocol layers functionalities and data paths
for both user- and control-plane.

As in legacy LTE, each PDCP entity is associated either to control or user data flows being
assigned to Signalling or Data Radio Bearer respectively. However, the introduction of a new
Radio Bearer, SRB1bis, grants to bypass PDCP before security activation or whenever CIoT
Control Plane solution is adopted by the core network. Moreover, PDCP SDU maximum
size is reduced from 8188 to 1600 octects and only short size 7 bits Sequence Number (SN)
is allowed instead of the 15 or 18 bits available. As for RLC layer, NB-IoT foresees to
work only on Transparent and Acknowledged Mode with the possibility of choosing whether
or not configure Status Report functionalities for reception failure directly from RRC layer.
Moreover, NB-IoT reduced set of resources is posing challenges on radio resource management
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Figure 2.11: NB-IoT radio protocol stack architecture.

and assignment, in particular on MAC scheduler design which is considered by the scientific
community one of the fundamental block of this new radio technology. Nevertheless, the
most important modifications have been introduced in the PHY and RRC layer which will be
discussed in the following subsections.

2.5.3 PHY
NB-IoT technology works on a 180 kHz bandwidth, i.e. one LTE PRB, applying a Type-B
Half-Duplex Frequency Division Duplexing (FDD) mode with an additional subframe between
every UL to DL switch [8]. The NB-IoT cell can be logically seen as a parallel cell to LTE
having its own Narrowband Physical Cell Identity (NCellID), synchronization and physical
signals. Therefore, deployment scenarios foresee three possible operating modes:

Stand Alone: the NB-IoT carrier is allocated irrespectively form the LTE band. Possible
solution is the deployment over a GSM frequency carrier of 200 kHz bandwidth.

In-Band: the NB-IoT carrier is allocated within the LTE cell utilizing same resource blocks.
However, the 100 kHz UE search raster implies that for in-band deployment a NB-IoT
carrier can be placed only in certain PRBs [7]. Moreover, there is no support of this
solution over LTE bands with 1.4 MHz bandwidth.

Guard Band: the NB-IoT carrier is allocated over the unused resource blocks within the
LTE carrier’s guard bands.
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The NB-IoT operating modes are shown in Figure 2.12:

Figure 2.12: Examples of NB-IoT stand-alone deployment and LTE in-band and guard-band
deployments in the downlink [7].

Furthermore, to cope with different radio conditions, NB-IoT technology aims on 20 dB link
budget higher than LTE Rel.12, reaching up to 164 dB of Maximum Coupling Loss (MCL) [7].
Coverage extension is achieved allowing large number of repetitions, up to 2048 in downlink
and up to 128 for uplink. These are managed by MME that configures up to 3 Coverage
Enhancement (CE) levels to set the number of times a message should be repeated depending
upon UE location.

2.5.3.1 Downlink

In the Downlink, Orthogonal Frequency Division Multiplexing (OFDM) scheme is adopted
using a 15 kHz subcarrier spacing with 7 OFDMA symbols bounded into 1 slot of 0.5 ms.
Slots are summed up into subframes and radio frames in the same way as for LTE as reported
by Figure 2.13 in which the NB-IoT downlink resource grid is for size of one single PRB.

Also in this case, a Resource Element (RE) is defined as one subcarrier in one OFDMA
symbol as indicated in Figure 2.13 by one square. However, the RE channel mapping varies
depending if In-Band, Guard Band or Stand Alone operating mode is deployed. In addition,
NB-IoT introduces the concept of Hyper-System Frame Number (HSFN) which counts legacy
LTE System Frame periods incrementing by 1 each time the SFN wrap around (i.e. every
1024 frames). This new time basis results useful for energy saving mechanism such as Power
Saving Mode (PSM) or extended Discontinuous Reception (eDRX) on which long interval of
time are considered.

For the Downlink, NB-IoT defines three physical signals:

• Narrowband Reference Signal (NRS): transmitted every NB-IoT downlink subframe.

• Narrowband Primary Synchronization Signal (NPSS): transmitted in subframe #5.

• Narrowband Secondary Synchronization Signal (NSSS): transmitted in subframe #9 of
even radio frames.

and three physical channels:

• Narrownband Physical Broadcast Channel (NPBCH): transmitted in subframe #0.

• Narrowband Physical Downlink Control Channel (NPDCCH): transmitted in remaining
subframes.

• Narrowband Physical Downlink Shared Channel (NPDSCH): transmitted in remaining
subframes previously scheduled through NPDCCH.

These, are primarily multiplexed in time generating the NB-IoT downlink subframe structure
reported in Figure 2.14 for both odd and even frames.
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Figure 2.13: LTE Downlink Resource Grid [8].

Figure 2.14: NB-IoT Downlink Subframe [9].

As can be noticed, there are less downlink channels than for LTE. For instance, Physical
Multicast Channel (PMCH) is not included since no eMBMS service is defined for NB-IoT.

2.5.3.2 Uplink

In the UL, Single Carrier Frequency Division Multiple Access (SC-FDMA) with 3.75 kHz or
15 kHz subcarrier spacing is applied. For 15 kHz, same resource grid of Figure 2.13 applies
while for 3.75 kHz the modified structure in Figure 2.15 for 2 ms slot is used. Again there are
7 OFDM symbols within a single slot.

For the Uplink, NB-IoT defines two physical channels:

• Narrowband Physical Uplink Shared Channel (NPUSCH)

• Narrowband Physical Random Access Channel (NPRACH)

and one reference signal:

• Demodulation Reference Signal (DMRS)
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Figure 2.15: NB-IoT resource grid for 3.75 kHz subcarrier spacing. There are 48 subcarriers
for the 180 kHz bandwidth [6].

Except for RACH transmission, all data are transmitted over NPUSCH including also the
Uplink Control Indication (UCI) since there is no equivalent to the LTE PUCCH for NB-IoT
[6]. Over NPUSCH, the smallest unit to mapping a transport block is called Resource Unit
(RU) whose definition depends on subcarrier spacing and NPUSCH Format used as described
in [8] chapter 10.1.2.3. Moreover, the new NPRACH implements pseudo-random single-tone
frequency hopping for preamble transmission as specified in [8] chapter 10.1.6.

For the sake of completeness, Table 2.1 summarizes the major changes introduced at physical
layer by NB-IoT in comparison to legacy LTE Rel.9. Some of them have been discussed in
this subsection, others are reported to give a wider look to this new radio technology.

LTE Rel.9 NB-IoT (LTE Rel.13)

System Bandwidth 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz 180 kHz (200 kHz)

Duplexing Mode Full Duplex FDD/TDD Half-Duplex FDD

Throughput DL: 150 Mbps, UL: 50 Mbps DL/UL (tilde) 200 Kbps

Operating Mode LTE Licensed Spectrum In-Band, Guard Band, Stand Alone

Maximum Coupling Loss (MCL) ∼ 145 dB ∼ 164 dB

Carrier Spacing DL/UL: 15 kHz DL: 15 kHz, UL: 15kHz or 3.75 kHz

Transmission Mode TM1-TM9 TM1/TM2 (1 antenna or 2 antenna)

Synchronization Signal PSS/SSS NPSS/NSSS

Detection of UL and DL channel DL: CRS, UL: DMRS DL: NRS, UL: DMRS

Downlink Channel

PDSCH NPDSCH
QPSK, 16 QAM, 64 QAM QPSK
1/3 Turbo Coding 1/3 Tail biting convolutional coding
1 subframe for Transport Block 1 or more subframes for Transport Block

Control Channel
PDCCH NPDCCH
Use 1 to 3 OFDM symbols of the first slot of the same PDSCH subframe Use an entire NB-IoT DL subframe
DCI Format: 0, 1, 1A, 2, 2A, 3, 3A, ... DCI Format: N0 (UL), N1 (DL), N2 (DL)

Uplink Channel

PUSCH NPUSCH
15 kHz sub-carrier spacing 15 kHz or 3.75 kHz sub-carrier spacing
1/3 Turbo Coding 1/3 Turbo Coding
Use 1 subframe for transmission Resource allocation based on Resource Unit (RU)
UL-SCH and UCI over same subframe UL-SCH without UCI

Low Power Consumption Technique DRX PSM, eDRX

Table 2.1: PHY layer features of legacy LTE Rel.9 and NB-IoT in comparison.
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2.5.4 RRC
Similarly to the physical layer, NB-IoT introduces drastic changes at RRC layer too, with
the establishment of new messages and dedicated Information Element (IE). Being a non
backward-compatible variant of E-UTRAN, some of the normal LTE functionalities and cor-
responding procedures are not supported in NB-IoT while others equally apply. These, are
partially summarized in Table 2.2 with reference to 3GPP Rel.13 specification available at
[10]. However, with further releases, new RRC capabilities have been introduced for NB-IoT
but not reported here since out of the scope of this Master thesis.

Not Supported Supported
Connected Mode Mobility (Handover and measurement reporting) System Information
Inter-RAT cell reselection or inter-RAT mobility in connected mode Connection Control
Relay Node (RN) DL Information Transfer
Dual Connectivity (DC) UL Information Transfer
Carrier Aggregation (CA) UE Capability Transfer
MBMS (Multimedia Broadcast Multicast Service) General Error Handling
Self-configuration and self-optimisation
Measurement configuration and reporting
Sidelink (including direct communication and direct discovery)
Real time services (including emergency call)

Table 2.2: RRC features and procedures not supported or supported by NB-IoT [10].

Additionally, the usage of different CIoT solutions for data transfer (see subsubsection 2.5.1.1)
introduced some exceptions on the RRC Connection Control procedures that can be applied
depending on whether user- (UP) or control-plane (CP) optimization is adopted. This is
shown in Table 2.3.

Connection Control Procedures CP UP
Paging X X
RRC connection establishment X X
RRC connection resume X
Initial Security Activation X
RRC connection reconfiguration X
RRC connection re-establishment X
RRC connection release X X
RRC conection release requested by upper layers X X
Radio resource configuration X X
Radio link failure related actions X X
UE actions upon leaving RRC_CONNECTED X X

Table 2.3: RRC Connection Control procedures for different CIoT EPS Optimization.

Since no handover to LTE or different Radio Access Technology (RAT) is supported, the
NB-IoT RRC state transition model simplifies to the one shows in Figure 2.16.

As in LTE, there are only two states, RRC_IDLE and RRC_CONNECTED, without other
associated UTRA or GSM states. RRC_CONNECTED to RRC_IDLE transition occurs
whenever Radio Link Failure or cell selection/re-selection is required. In the latter case, the
UE has first to release the connection, selects another “suitable” cell [32] and establishes a
new communication.

When a NB-IoT UE camps on a cell, it follows the same principle as for LTE: it first acquires
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Figure 2.16: Model of RRC states and their transitions.

Physical Cell ID (NCellID), time slot and frame synchronization through NPSS and NSSS.
Then, the UE reads associated System Information Blocks (SIBs) and starts the Random
Access Procedure to establish an RRC Connection and register within the core network. The
NB-IoT cell access flow with corresponding messages is reported in Figure 2.17. To be noticed
that a NB-IoT (-NB) version for System Information as well for RRC messages is defined, while
Random Access procedure has the same message flow as LTE although with different carried
parameters.

Figure 2.17: NB-IoT cell access flow.

Overall, NB-IoT introduced further changes on UE Capabilities, Access Barring, Establish-
ment Causes, Radio Link Failure and other procedures involving RRC layer at different levels.
In the remaining part of this section, the new Radio Bearer and System Information design
for NB-IoT are discussed, since of primary interest for this Master thesis and for the work
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presented in the following chapters.

2.5.4.1 Radio Bearers

Similarly to LTE, NB-IoT radio bearers are classified as Data Radio Bearers (DRBs) and
Signalling Radio Bearers (SRBs). In particular, the latter are partly re-used from legacy LTE
systems by NB-IoT which defines three [10]:

• SRB0: is for carrying common RRC messages transmitted using CCCH logical channel.

• SRB1: is for carrying dedicated RRC messages (which may include a piggybacked NAS
message) as well NAS messages, all using DCCH logical channel.

• SRB1bis: is for carrying dedicated RRC messages (which may include a piggybacked
NAS message) as well NAS messages prior the activation of security, all using DCCH
logical channel.

As can be noticed, there is no SRB2 defined but, in addition, a new Signalling Radio Bearer
1bis (SRB1bis) is introduced as previously highlighted in Figure 2.17. SRB1bis is implicitly
established with SRB1 using the same configuration but no PDCP entity [10]. This because, it
takes the role of SRB1 until security is activated and then is not used anymore [6]. SRB1bis
distinguishes from SRB1 by only the Logical Channel Identity (LCID) that is equal to 3
instead of 1. Moreover, for NB-IoT UEs that only supports the mandatory Control Plane
CIoT EPS optimization (see subsubsection 2.5.1.1) SRB1bis is always used since there is no
security activation in this mode.

As for Data Radio Bearers, instead of the 8 allowed by LTE, NB-IoT has reduced the number.
To keep the complexity low, a NB-IoT UE supports 0,1 or only up to 2 DRBs simultane-
ously, depending on its capability. These, are configured together with Signalling Radio
Bearers through RRCConnectionSetup-NB or RRCConnectionReconfiguration-NB messages.
Furthermore, A NB-IoT UE that only supports the Control Plane CIoT EPS optimisation
(see subsubsection 2.5.1.1) does not need to support any DRBs and associated procedures.

2.5.4.2 System Information

NB-IoT defines a reduced set of System Information Blocks, indicated with suffix “-NB”, with
similar functionalities as LTE but modified Information Elements (IEs). These, are shown
in Table 2.4 with reference to 3GPP Rel.13. Further SIBs have been introduced in NB-IoT
Rel.14 and later versions available at [10] but not reported here since out of the scope of this
Master thesis.

System Information Block Content

MasterInformationBlock-NB (MIB-NB) Essential information required to receive further System Information

SystemInformationBlockType1-NB (SIB1-NB) Cell access and selection, information for other SIB scheduling

SystemInformationBlockType2-NB (SIB2-NB) Radio resource configuration information

SystemInformationBlockType3-NB (SIB3-NB) Cell re-selection information for intra-frequency, inter-frequency

SystemInformationBlockType4-NB (SIB4-NB) Neighbouring cell related information relevant for intra-frequency cell re-selection

SystemInformationBlockType5-NB (SIB5-NB) Neighbouring cell related information relevant for inter-frequency cell re-selection

SystemInformationBlockType14-NB (SIB14-NB) Access Barring parameters

SystemInformationBlockType16-NB (SIB16-NB) Information related to GPS time and Coordinated Universal Time (UTC)

Table 2.4: NB-IoT System Information Blocks for 3GPP Rel.13.

NB-IoT UE exclusively use these SIBs and ignore those from LTE, even in the case of in-band
operation. It is always mandatory for a UE to have a valid version of MIB-NB, SIB1-NB
and SIB2-NB through SIB5-NB [10] while other SIBs are needed only if their functionalities

21



2. Background

are required. Moreover, System information acquisition and change procedure is only applied
in the RRC_IDLE state, therefore, NB-IoT UEs are not expected reading SIB information
while being in the RRC_CONNECTED state [6]. Furthermore, to cause minimum UE battery
consumption, the physical layer imposes a limit of 680 bits to the maximum size a SIB and
SI message can take [33].

2.5.4.3 System Information Scheduling

In terms of sequence of decoding, NB-IoT takes a similar approach to LTE. It starts first
with MIB-NB, then gets SIB1-NB and finally extracts SI-Messages containing SIB2-NB and
other Information Blocks. However, the most outstanding difference between the two radio
technologies is that for NB-IoT there is no Downlink Control Indication (DCI) associated
to SI or SIBs. All necessary information to acquire System Informations are notified to UE
over MIB-NB first and SIB1-NB later as highlighted in bold in previous Figure 2.17. This
defines a “NPDCCH-less” approach in which scheduling parameters are fixed instead of being
dynamically indicated on NPDCCH. Moreover, NB-IoT SI messages are transmitted discon-
tinuously to take advantages of time diversity since spreading out transmission across time
can improve performance at very low Signal-to-Noise Ratio (SNR) conditions [34]. In the fol-
lowing, scheduling procedure for Narrowband Master Information Block, System Information
Block 1 and System Information Messages is discussed since constitutes the starting point for
the work presented in subsubsection 5.1.5.2.

MIB-NB Scheduling The Narrowband Master Information Block (MIB-NB) is the fun-
damental message needed to acquire essential information from the cell on which the UE is
camped. Therefore, its scheduling results in the most frequent transmissions and repetitions
by the eNodeB. MIB-NB contains 34 bits and is transmitted over the NPBCH channel using
a fixed schedule with a periodicity of 640 ms (64 radio frames) over which repetitions are
made. The first transmission of the MIB-NB is scheduled in subframe #0 of radio frames for
which SFNmod64 = 0 and repetitions are made in subframe #0 of all the next consecutive
radio frames. Moreover, due to baseband processing, the MIB-NB transmission is arranged in
8 independent decodable blocks of 80 ms duration each. The first block is transmitted in the
first subframe of the starting radio frame and repeated in subframe #0 of the next 7 consec-
utive radio frames, respectively. In the subframe #0 of the following radio frames the same
procedure is applied for MIB-NB Block #2 (BL2) and all the others blocks. This process is
continued until the whole Narrowband Master Information Block is transmitted. Figure 2.18
shows the MIB-NB scheduling highlighting frames, subframes numbers and decodable blocks
delivery.

SIB1-NB Scheduling The Narrowband System Information Block Type1 (SIB1-NB) is
transmitted over the NPDSCH channel using a fixed schedule with periodicity of 2560 ms
(256 radio frames) over which 4, 8 or 16 equally spaced repetitions are made. SIB1-NB
transmission occurs in subframe #4 of every other frame in 16 continuous frames [10]. Four
possible Transport Block Sizes (TBSs) of 208, 328, 440 and 680 bits are defined and SIB1-
NB content may only be changed on each modification period, which has a length of 4096
radio frames, i.e. 40.96 seconds. The SIB1-NB starting radio frame and the number of
repetitions are derived from the eNodeB Narrowband Physical Cell Identity (NCellID) and
from the schedulingInfoSIB1 parameter delivered in the Narrowband Master Information
Block. Figure 2.19 reports the evaluation procedure for SIB1-NB repetitions and starting
radio frame through Table 16.4.1.3-3 and Table 16.4.1.3-4 as specified in [33]. Moreover,
Figure 2.20 shows the resulting SIB1-NB scheduled transmission in subframe #4 with starting
radio frame #16 and repetition number 4.
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Figure 2.18: MIB-NB scheduling.

Figure 2.19: Evaluation procedure for SIB1-NB repetitions and starting radio frame.

Figure 2.20: SIB1-NB scheduling example. Starting radio frame #16 and repetition number
4.

Since repetitions are equally spaced and in each of them SIB1-NB is delivered in every other
frame within 16 continuous ones, transmissions may occur in odd or even frames depending
if the starting radio frame is an odd or even number, respectively. Moreover, given the
repetitions characteristics, the following formula can be used to calculate the repetition offset
in radio frames (rf):

Offset =
256rf − (16 · n_repetitions)

n_repetitions
(2.1)
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with n_repetitions given by Table 16.4.1.3-3 shown in Figure 2.19.

SI-Message Scheduling Narrowband System Information Blocks (SIBs) other than SIB1-
NB and with same scheduling requirements are mapped and carried in System Information
Messages (SI-Messages) with the mapping procedure that is flexibly configurable by the
schedulingInfoList parameter carried by SIB1-NB. As for LTE system, also in NB-IoT the
SystemInformationBlockType2-NB is always mapped in the SI-Message that corresponds to
the first entry of the scheduling list of SIB1-NB. As previously mentioned, the SI-Messages
scheduling is “NPDCCH less”: all the necessary scheduling information for the message acqui-
sition by the UE like timing, Transport Block Size (TBS) and repetition patterns are directly
indicated by SIB1-NB parameters instead of being dynamically specified in a DCI. SI-Messages
are transmitted within periodically occurring time domain windows, referred as SI-Windows,
using scheduling information provided in SIB1-NB. Each SI-Message is associated with its
own SI-Window, and SI-Windows of different SI-Messages do not overlap [10] such that the
UE receives only one single information message within one SI-Window. The window length
and its possible starting offset are common to all SI-Messages and are configurable through
the SIB1-NB’s si_windowLength and si_RadioFrameOffset parameters respectively. More-
over, within the SI-Window the corresponding SI-Message is transmitted over a number of
consecutive downlink subframes depending on the TBS. For instance, a TBS of 56 or 120 bits
requires only 2 subframes while other TBSs are transmitted over 8 subframes.

Table 2.5 summarizes the most relevant parameters provided by SIB1-NB for SI-Messages
scheduling together with a brief description of their functionalities.

SIB1-NB parameter Description

si_WindowLength Absolute length in milliseconds of the SI-Window. It is common to all SI-Messages.

si_RadioFrameOffset Offset in number of radio frames to calculate the starting of the SI-Window. It is
common to all SI-Messages.

schedulingInfoList List of SI-Messages carried by,the SIB1-NB.

si_Periodicity Periodicity of the SI-Message,in radio frames.

si_RepetitionPattern Starting radio frames within,the SI-Window in which an SI-Message transmission occurs.

sib_MappingInfo List of the SIBs mapped in the SI-Message.

si_TB Indicates the Transport Block Size in number of bits used to broadcast the SI-Message and
the corresponding number of consecutive downlink subframes required.

downlinkBitmap Indicates the allowed subframe configuration for downlink transmission. If not present,
all subframes are valid except for those carrying NPSS/NSSS/NPBCH/SIB1-NB.

Table 2.5: Relevant SIB1-NB parameters for SI-Message scheduling.

As reported in [10] and based on parameters of Table 2.5, every SI-Window starts in subframe
#0 in the radio frame that satisfies the following formula:

(HSFN · 1024 + SFN)modT = FLOOR(
x

10
) +Offset (2.2)

where T is the si_Periodicity, Offset corresponds to si_RadioFrameOffset and x is an integer
value determined from the formula:

x = (n− 1) · w (2.3)

with w the si_WindowLength and n a number corresponding to the order of entry of the
concerned SI-Message in the schedulingInfoList of SIB1-NB.

After determining the SI-window start, a NB-IoT UE accumulates SI-Message transmissions
on Downlink Shared Channel (DLSCH) until the end of the window, starting from the radio
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frames as provided by si_RepetitionPattern and in subframes as provided by downlinkBitmap,
if defined, until a successful decoding of the message. In the following, a simple transmission
example of two SI-Messages (SI_1 and SI_2) is shown in Figure 2.21 with the corresponding
parameters setup reported in Table 2.6.

SI_1 parameter Value

si_WindowLength 160 ms
si_RadioFrameOffset 0
si_Periodicity 64 RF
si_RepetitionPattern Every2ndRF
sib_MappingInfo sibType3_NB, sibType4_NB, sibType5_NB

SI_2 parameter Value

si_WindowLength 160 ms
si_RadioFrameOffset 0
si_Periodicity 128 RF
si_RepetitionPattern Every8thRF
sib_MappingInfo sibType14_NB, sibType16_NB

Table 2.6: SIB1-NB parameters setup for SI_1 and SI_2 message scheduling of Figure 2.21.

Figure 2.21: SI-Message scheduling example.

In NB-IoT, various possible configurations of System Information delivery poses challenges on
efficient combination of SI-Message transmission together with SIB1-NB and MIB-NB. This
is also dependent on messages’ TBS which affects the number of downlink subframes needed.
For instance, block sizes greater than 120 bits require 8 subframes for SI-Message delivery and
if the SI transmission frame coincides with the SystemInformationBlock1-NB one, there will
be one subframe less (subframe #4). As a consequence, an UE might be unable to completely
receive a SI-Message in one single frame but should continue to receive remaining parts in
other radio frames following the si_RepetitionPattern. This and other aspects on System
Information scheduling will be resumed in subsubsection 5.1.5.2.
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Chapter 3

Small Cell Deployment and Functional API

3.1 Introduction
Today, mobile networks have shifted from being predominantly voice networks to mainly
transporting data with an unabated growing of consumer demand for “always-on”, high speed
and low-latency services. This scenario poses many challenges to mobile network operators,
the first of which is how supply the enormous data capacity required and how to ensure
economic sustainability at the same time. It is widely accepted that in order to achieve
higher capacity and increased speeds in a real world deployment, many more cell sites are
required and this approach has not escaped to operators that have been quick to endorse
small cells deployment in residential, urban and rural areas. There is no formal definition
of the term “small cell” but it mostly refers to low-powered radio access nodes that operate
in licensed and/or unlicensed spectrum, with a coverage range of 10 meters up to hundreds
of meters. Nevertheless, small cell technology has evolved considerably in the late years to
provide longer range, higher capacity designs and Quality of Service (QoS) management while
maintaining scalability and cost-effectiveness. For this reason, sometimes the term “small cell”
may imply femtocells, picocells and microcells concepts [35]. The need to accelerate small
cell adoption to change the shape of mobile networks and maximize the potential of mobile
services [14] resulted in the creation of the non-profit organization “Small Cell Forum” in
2017. It is not a standards organization but partner with organizations like 3GPP, ETSI,
GSMA and others that inform and determine standards development [14]. The Forum’s work
is concerned with the multiple ways in which licensed small cells can be deployed across
residential, urban and rural networks by providing operators with all the information they
need to successfully launch a small cell technology in their own systems. To this end, with
more than fifty documents, the Small Cell Forum Release Program provides a combination of
practical working guides, case studies and technical “how-to” publications to ease the roll-out
of small cells.

3.2 Functional and Network Functional API
Among the different initiatives within the small cell industry, the Small Cell Forum have driven
the standardization of two common Application Platform Interfaces (APIs) presented in the
Release 9 document available at [9]. The first goes under the name of Functional Application
Platform Interface (FAPI) and is the internal interface between the MAC and PHY protocol
layers within a small cell ecosystem in which the eNodeB is considered as a single element.
The second is an extension of the FAPI called Network Functional Application Platform
Interface (nFAPI) where the eNodeB functionalities reside partially in a Virtual Network
Function (VNF) and partially in a Physical Network Function (PNF). Also in the latter, the
MAC-PHY interface has been identified as a suitable split point towards a converged approach
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to virtualization in which a packet switched IP network is used to support communication
between the VNF and PNF entity. Figure 3.1 shows the FAPI and nFAPI architecture and
the possible relationship between the two.

Figure 3.1: FAPI vs nFAPI architecture [9].

The FAPI and nFAPI standardization aims to provide a common architecture over a scalable
ecosystem in which parts are interchangeable, ensuring that system vendors can take advan-
tage of the least hardware and software innovation with minimum barriers to entry and the
least amount of custom re-engineering [9].

The Release 9 specification addresses the usage of commercial small cells both for today’s
4th and for future 5th generation of mobile radio networks. The document [9] foresees the
adoption of a 3GPP eNodeB compliant with Rel.8 up to Rel.13 standard. The latter includes
also the new radio technology developed for the IoT market, NB-IoT, for which an entire
chapter addressing major use cases is dedicated in the Forum’s document. This has been
the reference starting point in this Master project for the development of a FAPI compliant
MAC-PHY interface on OpenAirInterface platform as will be presented in section 5.2.

Moreover, to accelerate the adoption of Small Cell Forum’s standards, in 2017 CISCO com-
pany started an open-source project called “open-nFAPI” [15]. Open-nFAPI is the implemen-
tation of nFAPI, aiming to provide an open interface between LTE layer 1 and layer 2 to allow
for interoperability between the PNF and VNF. This project rose interests in the research
communities as a valuable tool for bring FAPI/nFAPI functionalities on their systems and
to align with the multi-vendor platform requirements for the next generation of small cell
deployments. For this reason, open-nFAPI has been reused with some extent also in OpenAir-
Interface as a valuable tool for supporting the MAC-PHY functional split introduced during
this Master thesis.

3.3 FAPI Procedures and Messages for NB-IoT
The purpose of this section is to give a general overview of the major Narrowband-IoT FAPI
procedures and messages specified in [9] that have been subject of study during this Master
thesis.

The reference architectures presented in Figure 3.1 foresee the usage of several APIs for both
FAPI and nFAPI use cases:
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• P4: is the Network Monitor Mode (NMM) interface that is typically used by PNF for
scanning neighbouring LTE or E-UTRAN cells.

• P5: is the PHY mode control interface supporting different configuration procedures for
the physical layer.

• P7: is the data path interface controlling and managing DL and UL data transfer
between PHY and higher protocol stack layers.

In FAPI standard, both control- and data-plane information is passed through the PHY-
MAC API (L1 API). Interactions with upper protocol layers (L2/L3) are managed by a PHY
Control Entity for configurations and by the MAC layer for data-plane messages exchange.
As a result, the FAPI procedures are split into two groups, namely, Configuration Procedures
and Subframe Procedures taking place over P5 and P7 respectively. Configuration procedures
handle the management of the PHY layer and are expected to occur infrequently, while
Subframe procedures determine the structure of each 1 ms subframe and operate with a 1 ms
periodicity [9]. Figure 3.2 provides an example on how the different L2/L3 protocol layers
interact with the L1 API through the P5 and P7 interfaces.

Figure 3.2: L1 API interactions [9].

3.3.1 P5 Configuration Procedure
In Configuration Procedures, the Physical layer is presented as a Finite State Machine (FSM)
which can move in IDLE, CONFIGURED and RUNNING states through a set of messages
received over the P5 interface. Figure 3.3 shows the PHY states and the corresponding
messages for state transition.

Each configuration message is characterized by a specific collection of Type-Length-Value
(TLV) which specify the different carried elements. In particular, relevant for this Master
thesis work is the CONFIG.request message which allows the L2/L3 software to configure
the PHY layer at initialization time bearing all the necessary NB-IoT Information Elements
(IE). Implementation details of this and other configuration messages on the OpenAirInterface
platform will be given in section 5.2.
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Figure 3.3: PHY layer state transactions on L1 API configuration messages [9].

3.3.2 NB-IoT Downlink Subframe Procedure
The Subframe Procedure has two purposes. On one hand, it is used to control the Downlink
and Uplink frame structures by maintaining System Frame Number (SFN) and Sub-Frame
(SF) synchronization between the L2/L3 software and PHY layer. On the other hand, it
allows the subframe data transport through P7 interface.

Since part of this thesis project addresses the implementation of a FAPI-like interface for
downlink data communication within NB-IoT, a brief description of downlink Subframe Pro-
cedures over Narrowband BCH and DLSCH are introduced in the following. For further
details, refers to the official Small Cell Forum FAPI/nFAPI specification available at [9].

3.3.2.1 NB-IoT BCH Procedure

The Narrowband Broadcast Channel (NBCH) is used to transmit the Narrowband Master
Information Block (MIB-NB) to the UE. The corresponding FAPI procedure is reported in
Figure 3.4.

Whenever a BCH transmission is initiated, the L2/L3 software should provide the following
information messages to the PHY layer:

• DL_CONFIG.request : including a N-BCH PDU indicating all the necessary control
information to enabling the Physical layer to transmit the MAC PDU carried by the
following TX.request message.

• TX.request : carrying the MAC PDU in which the MIB-NB message is included.

Following the MIB-NB scheduled transmission already presented in subsubsection 2.5.4.3, the
L2/L3 layer should provide the N-BCH PDU to the PHY only in SF #0 for each radio
frame when SFNmod64 = 0, i.e. every 640 ms. Then, the PHY manages the MIB-NB sub-
blocks transmission and repetitions as reported in Figure 3.4. Both DL_CONFIG.request
and TX.request messages are transmitted over the same subframe at the start of MIB-NB
period.

3.3.2.2 NB-IoT DLSCH Procedure

The DLSCH is the transport channel used for delivering UE-specific data and System Infor-
mation from the eNodeB. The corresponding FAPI procedure is shown in Figure 3.5.

To transmit a DLSCH PDU the L2/L3 software must provide the following information mes-
sages to the PHY layer:
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Figure 3.4: NB-IoT FAPI BCH procedure [9].

• DL_CONFIG.request : including a NPDCCH DCI PDU which specifies control infor-
mation instructing the PHY for both DCI and the following DL subframe transmission.
In particular, it specifies the number of times the control channel is repeated and the
delay between the final DCI transmission and start of NDLSCH transmission [9].

At the required DL subframe specified by the NPDCCH PDU, the L2/L3 software provides:

• DL_CONFIG.request : including a NDLSCH PDU indicating to the PHY layer further
control information for the following MAC PDU transmission.

• TX.request: carrying the MAC PDU containing the data to be delivered.

Whenever the HARQ process is enabled for the current MAC PDU, at the relevant UL sub-
frame for ACK/NACK reception, the L2/L3 software provides:

• UL_CONFIG.request : including a NULSCH PDU instructing the PHY for ACK/NACK
reception.

Finally, PHY layer will return the ACK/NACK response through a NB-HARQ.indication
message.
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Figure 3.5: NB-IoT FAPI DLSCH procedure [9].
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Chapter 4

Initial System Characterization

This chapter introduces the general RAN software architecture of OpenAirInterface, namely
openairinterface5G. As a preliminary view, general features currently in force over the OAI
platform are presented with details for the RRC protocol layer. Then, the software architec-
ture is discussed starting from directories organization up to the description of main running
threads and tasks. Afterwards, a top level view of RRC and PHY layer eNodeB code is given,
with the former explained with much details since constitutes the starting point of this Master
thesis project.

4.1 OpenAirInterface Features
As an open-source project, OpenAirInterface is a community effort and therefore, its imple-
mented features are constantly evolving. As a reference starting point, Table 4.1 and Table 4.2
present a list of all consolidated LTE characteristics of OAI eNodeB’s physical layer (PHY) and
E-UTRAN. Moreover, Table 4.3 describes the initial status of the eNodeB’s Radio Resource
Control (RRC) layer before the start of Narrowband IoT (NB-IoT) protocol implementation.

Physical Layer (PHY): LTE Release 8.6 compliant, with a subset of Release 10

Duplexing mode FDD and TDD configurations 1(experimental) and 3

Bandwidth 5,10 and 20 MHz

Transmission mode Stable: 1 (SISO) and 2,4,5,6 (MIMO 2x2)
Experimental: 7 (MIMO 2x2)

Number of Antennas 2

CQI/PMI reporting Aperiodic, Feedback mode 3-0 and 3-1

PRACH preamble Format 0

DL Channels PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH

UL Channels PRACH, PUSCH, PUCCH (format 1/1a/1b), SRS, DRS

HARQ support UL and DL

Expected Throughput Downlink • 5 MHz, 25 PRBS/ MCS 28 = 16 Mbit/s (measured with COTS UE Cat 3/4)
• 10 MHz, 25 PRBS/MCS 28 = 34 Mbit/s (measured with COTS UE Cat 3/4)

Expected Throughput Uplink • 5 MHz, 20 PRBs / MCS 20 = 9 Mbit/s (measured with COTS UE Cat 3/4)
• 10 MHz, 45 PRBs / MCS 20 = 17 Mbit/s (measured with COTS UE Cat 3/4)

Table 4.1: OpenAirInterface eNodeB PHY features [5] [11].

33



4. Initial System Characterization

E-UTRAN Protocol Stack: LTE Release 8.6 compliant, with a subset of Release 10

Protocol Layers MAC, RLC, PDCP and RRC

Broadcast and Multicast service (eMBMS) PDCP, RLC, MAC, RRC and corresponding channels (MCH, MCCH, MTCH)

MAC Scheduler Priority-based with dynamic MCS selection

Core Network Interfaces S1AP and GTP-U

IP protocol support IPv4 and IPv6

Integrity check and encryption using the Advanced Encryption Standard (AES) algorithm

RRC measurement and measurement gap

Fully reconfigurable protocol stack

Table 4.2: OpenAirInterface E-UTRAN features [5] [11].

Radio Resource Control (RRC): LTE Release 8.6 compliant, with a subset of Release 10

3GPP specification TS 36.331 Rel.9.2.0

Radio Bearers SRB0, SRB1 and SRB2

Connection Control procedures

• RRC Connection Establishment
• Initial Security Activation (missed failure management)
• RRC Connection Reconfiguration
• RRC Connection Re-establishment (only rejection)
• RRC Connection Release
• Radio Resource Configuration
• Radio Link Failure

System Information Messages MIB, SIB1, SIB2, SIB3 and SIB13 (Rel.10)

RRC Messages

• RRCConnectionRequest (UE)
• RRCConnectionSetup
• RRCConnectionSetupComplete (UE)
• RRCConnectionReject
• ULInformationTransfer (UE)
• DLInformationTransfer
• UECapabilityEnquiry
• UECapabilityInformation
• SecurityModeCommand
• SecurityModeComplete (UE)
• RRCConnectionRelease
• RRCConnectionReconfiguration
• RRCConnectionReestablishmentRequest (UE)
• RRCConnectionReestablishmentReject

Table 4.3: OpenAirInterface eNodeB and UE RRC features [5] [11].

4.2 Openairinterface5G directories
The openairinterface5G software is distributed on the OpenAirInterface GitLab repository
available at [28]. The customization can be performed by editing different files at various
levels of the OAI RAN code. Figure 4.1 shows the relevant working directories within the
openairinterface5G project with also a brief description of their contents.

Both openairinterface5G and openairCN, make use of the open-source cross-platform CMake
for managing the code build process. Therefore, the software updating results relatively simple
by including the new file paths in the CMakeLists text file inside the cmake_targets directory.
A top-level build script, ./build_oai, located in openairinterface5g/cmake_targets is used to
start the lte-softmodem compilation. Currently, the tool is developed to build the eNodeB
for different hardware platforms, 3GPP releases, standalone or with S1 interface, unitary
simulations, and system simulation [28]. The compilation creates executables in openairinter-
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openairInterface5G
cmake_targets → directory for building all the targets through

a CMakeLists.txt file, contains “mother”
build_oai script.

openair1 → basic DSP routines for implementing subset of
3GPP LTE specifications under x86 architecture,
channel simulation and PHY abstraction
software.

PHY → contains all the signal processing related
for the physical layer (used in real-time) and
simulations.

SCHED → schedules the differen PHY functions according
to the nodes role.

...
openair2

LAYER2 → 3GPP LTE Rel.10 RLC/MAC/PDCP implementation.
PDCP
RLC
MAC

RRC
X2AP

openair3 → 3GPP LTE Rel.10 implementation of S1-C, S1-U
(S1AP, GTPV1-U, SCTP) and NAS interfaces for
both ENB and UE.

targets → hardware specific code (drivers, tools, etc),
lte-softmodem, oaisim.

RT
PROJECTS → “.config” files for different band and hardware

configuration.
...

Figure 4.1: openairinterface5G main directories and content description.

face5g/targets/bin which allows to run the eNodeB code with different hardware and band
configurations from input files located in targets/PROJECTS/GENERIC-LTE-EPC/CONF/.

4.3 Software Architecture
As already mentioned, the OpenAirInterface RAN software foresees a full implementation of
the LTE Access Stratum (AS) protocol (i.e. eNodeB and UE). The code is written in standard
C and all the OAI protocol stack, including the PHY layer, runs entirely on a PC in a Linux-
based operating system with low-latency kernel and Real Time Application Interface (RTAI)
for addressing strict timing constraints operations. OpenAirInterface exploits a multi-thread
parallel processing architecture as presented in Figure 4.2.

It is possible to distinguish between real-time (Worker, PRACH and Master) and non-real-
time (RRC, S1AP, X2AP, GTP, Application) threads and each of them is possibly supplied
with a queue defining a task. The eNodeB Application processes the configuration files, initial-
izes the eNodeB modem and the protocol stack layers, and starts the OAI threads. The timing
is managed by the Master thread that generates and maintains the System Frame Number
(SFN) and the Subframe (SF) numerology allowing transmitter and receiver to operate in
synchronized mode. The Worker thread constitutes the main routine for transmission and re-
ception between the eNodeB and UE while the exchange of messages among the OAI protocol
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Figure 4.2: OpenAirInterface RAN software architecture.

stack takes place through an intermediary program module called Inter Task Interface (ITTI).
However, the communication protocols used on OpenaAirInterface are sometimes heteroge-
neous and in some cases implemented through simple function calls among the different parts.
In addition, the architectural framework presented in Figure 4.2 supports a flexible functional
split over Ethernet Fronthaul (FH) for C-RAN architecture solutions on the OpenAirInterface
platform. This allows a separation of the eNodeB baseband processing into small functional
components placed either at Remote Radio Units (RRUs) or Baseband Units (BBUs) [36].

4.3.1 RRC eNodeB Software Architecture
This subsection describes the RRC layer code structure of OAI’s eNodeB from a general view
point. Among the possible ways to explain it, to ease the programming approach and make
understandable the implemented procedures, a logical representation has been preferred as
reported in Figure 4.3.

The RRC task, namely rrc_enb_task, is performed through a Finite State Machine (FSM)
which, from a logical view point, plays two fundamental roles:

• Message Handler/Generator: processes the received UL messages over CCCH or DCCH
logical channels and, based on their contents, may generate DL ones.

• ASN.1 UPER Encoder/Decoder: encode/decode messages for transmission/reception
procedures in ASN.1 UPER standard encoding rules (see section 2.4).

The state machine is first initialized then triggered by different protocol entities and, conse-
quently, may transmit data to lower layers through RRC specific interfaces. The latter ones,
are not considered in this introductory chapter but a full description will be given in subsec-
tion 5.1.3. On the contrary, initialization and main procedure of RRC are discussed in the
following.
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Figure 4.3: OpenAirInterface RRC logical representation.

4.3.1.1 Initialization

The initialization procedure for the OAI RRC layer is shown in Figure 4.4. The process is
started by the “main” function in lte-softmodem.c file that also constitutes the entry point
of the overall OpenAirInterface system. At first, the rrc_enb_task is created through the
ITTI primitive called create_tasks, together with other tasks. Then, RRC parameters are
initialized by means of the l2_init function that first configures the MAC and consequently
the RRC. In particular, the rrc_init_global_param registers RRC with the lower RLC en-
tity while openair_rrc_top_init allocates memory for the Radio Resource Control’s instance,
namely eNB_RRC_INST. The latter is the C-structure carrying all the relevant informa-
tion for UE context management, Radio Bearer setup, System Information’s buffer and layer
configurations.

Figure 4.4: OpenAirInterface RRC initialization procedure.

37



4. Initial System Characterization

4.3.1.2 RRC Main Procedures

The RRC layer is an event-based state machine with events generated by different protocol
entities as ITTI messages or primitives. Figure 4.3 shows some examples. Based on input
message type, different logical procedures can be initiated which involve various parts of OAI
RRC code. For the sake of simplicity, it is decided to group them in three:

Configuration procedures: triggered by the eNodeB Application (APP) layer through the
RRC_CONFIGURATION_REQ message.

Decoding/Encoding procedures: triggered by MAC or PDCP through
RRC_MAC_CCCH_DATA_IND and RRC_DCCH_DATA_IND respectively.

S1 AP procedures: triggered by MME messages over the S1 AP protocol interface. For In-
stance, S1AP_DOWNLINK_NAS and S1AP_INITIAL_CONTEXT_SETUP_REQ.
These procedures will be no more considered further since out of the scope of this thesis.

Configuration Procedure On OpenAirInterface, the RRC configuration aims to initialize
the basic Signalling Radio Bearers (i.e. SRB0 and SRB1) buffers, create hash tables for storing
the UE context and triggers System Information transmission.

Figure 4.5: OpenAirInterface RRC configuration procedure.

As shown in Figure 4.5, the entire process is initiated by the configure_rrc function at eN-
odeB application layer that fills the RRC_CONFIGURATION_REQ message and sends it
through ITTI interface. The RRC configuration is then managed by the openair_rrc_eNB_
configuration primitive which sets major flags for Multicast service (eMBMS) and, among
other things, recalls init_SI. The latter is the function that first generates and encodes Sys-
tem Information messages, then triggers PHY and MAC layer configuration.

Decoding/Encoding Procedure The OAI software provides a full set of routines for
RRC message encoding/decoding, process and generation. These can be categorized as follow:

• rrc_eNB_decode_xxx: are the entry routines to decode and parsing uplink CCCH and
DCCH messages. Examples are: rrc_eNB_decode_ccch and rrc_eNB_decode_dcch.

• rrc_eNB_process_xxx: set of functions in charge of processing the received RRC mes-
sages from the UE and extracts relevant Information Elements (IEs). Examples are:
rrc_eNB_process_RRCConnectionSetupComplete, rrc_eNB_process_RRCConnection
ReconfigurationComplete etc.
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• rrc_eNB_generate_xxx: set of functions to generate and encode RRC messages before
being transmitted through the downlink path. Examples are: rrc_eNB_generate_
RRCConnectionSetup, rrc_eNB_generate_RRCConnectionReject etc.

• others: functions for UE context management, handover and measurement reporting
within the RRC instance.

The general decoding/encoding procedure is presented in Figure 4.6. Green boxes represent
the ASN.1 UPER Encoding/Decoding capabilities of the RRC FSM while the blue rectangle
groups message handling and generating functions.

Figure 4.6: OpenAirInterface general decoding/encoding procedure.

A decoding procedure can be triggered either by MAC or PDCP whenever the eNodeB receives
uplink messages over Command Control Channel (CCCH) or Dedicated Control Channel
(DCCH) respectively. In this case, the usage of ITTI interface is optional since data transfer
may also occur through some primitives, namely mac_rrc_data_ind and rrc_data_ind as
reported in Figure 4.3. Depending on the logical channel, two specific functions are activated:
rrc_eNB_decode_ccch and rrc_eNB_decode_dcch. These are used by RRC to start the
ASN.1 decoding process following UPER rules and, based on message content, to invoke
the suitable processing function. If a new downlink message needs to be generated, a set of
message-specific routines, commonly referred as do_xxx, build the message contents based on
ASN.1 notation (yellow box). These are located under the RRC/LITE/MESSAGES directory
in the asn1_msg.c source file. Finally, before transmission the message is encoded with the
same UPER rules as before.
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4.3.1.3 RRC Message Sequence

For a comprehensive view, this subsection briefly describes the RRC message sequence of
OpenAirInterface shown in Figure 4.7. For each message, transport or logical channel is
indicated with corresponding radio bearers and LCID. Moreover, relevant carried information
is reported below corresponding transmissions and important actions on both UE and eNodeB
side are highlighted.

As a first step, eNodeB broadcasts System Information (SI) messages including SIB1, MIB
and an SI-Message. The latter delivers only the mandatory SIB2, SIB3 and optionally SIB13
since other SIBs types are not supported by OAI (see Table 4.3). After the SI acquisition, the
UE moves in RRC_IDLE state and starts the Random Access (RA) procedure. In this phase,
MAC layer messages (Preamble and RA Response) are exchanged before the first RRC Connec-
tion Request message is received by the eNodeB. After UE Context creation, the eNodeB gen-
erate following RRC Connection Setup message through its specific do_RRCConnectionSetup
function. Then, the UE changes in RRC_CONNECTED state and activates SRB1 with con-
figuration carried in the setup message. The RA procedure concludes with the reception of
an RRC Connection Setup Complete message by the eNodeB which triggers the UE context
update over the RRC instance. Afterwards, the context is managed over the S1 AP protocol
by the MME which triggers the RRC Security Activation procedure and the subsequent UE
capability acquisition. Like in the previous case, any RRC message is generated starting from
its specific ASN.1 function, i.e. “do_xxx”. The last part of Figure 4.7 shows the “default”
RRC Connection Reconfiguration procedure that brings to SRB2 and DRB1 setup, PHY and
MAC’s configurations and NAS information exchanged between the eNodeB and UE. A suc-
cessful reconfiguration is followed by a UE context status update in RRC_RECONFIGURED
and a setup of bearer flags within the RRC instance. Finally, a “dedicated” RRC Connection
Reconfiguration procedure might be initiated by the S1 AP protocol to configure further
DRBs and dedicated NAS information for the UE.

4.3.2 PHY eNodeB Software Architecture
This subsection gives a brief description of the eNodeB PHY’s software architecture of Ope-
nAirInterface. This will result useful as a preliminary introduction for the work presented in
subsection 5.2.3 related to the design of a new Physical layer for Narrowband-IoT based on
Functional Application Platform Interface (FAPI) standard.

The OAI PHY layer provides the LTE functionalities for encoding, modulation, channel es-
timation and reference signals. It implements all the uplink and downlink physical channels
and oversees the transmission (TX) and reception (RX) procedures as well as the power
control algorithm. In OpenAirInterface, physical layer TX and RX procedures run either
over one single thread, called “eNB_thread_single” or two identical parallel threads, namely
“eNB_thread_rxtx”. In both cases, the rxtx is the fundamental function for the activation of
physical layer mechanisms for transmission and reception. The rxtx flow chart is reported in
Figure 4.8 and described below.

At first, rxtx initiates a common reception procedure on current subframe (n) by awakening
the single RX Random-Access thread over the PRACH channel, namely do_prach. Then,
the phy_procedure_eNB_uespec_RX function activates UE specific reception mechanisms
to process messages and signals received over PUCCH and PUSCH channels. Finally, the
transmission procedure for subframe n+4 is initiated and the phy_procedures_eNB_TX
function is triggered. This will manage the encoding, modulation and scrambling over the
PDSCH, PDCCH, PHICH and PCFICH channel as well as the transmission over RF front
end.

40



4.3. Software Architecture

Figure 4.7: OpenAirInterface RRC message flow.
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Figure 4.8: OpenAirInterface rxtx flow chart.
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Chapter 5

NB-IoT Software Implementation on
OpenAirInterface

This chapter describes the contribution of this master thesis to address the implementation
of NB-IoT protocol stack over OpenAirInterface platform. At first, Radio Resource Control
layer’s improvements are discussed by outlining the new RRC Finite State Machine, a dif-
ferent SRBs management, RRC interfaces and System Information scheduling. Afterwards,
the implementation of FAPI/nFAPI standard for the MAC-PHY interface is described by
introducing a new module (IF-Module) and then focusing to the PHY procedures developed
to support this new approach. Overall, only those parts of the OpenAirInterface code related
to eNodeB have been considered during this master project, in line with the OSA purposes
to introduce a clear distinction between eNodeB and UE side implementation.

5.1 NB-IoT RRC Layer Implementation
As discussed in section 2.5, the control-plane of NB-IoT introduces some major changes with
respect to legacy LTE systems. It reduces the RRC functionalities supported, proposes a new
Signalling Radio Bearer (i.e. SRB1bis), foresees a different SI-Message scheduling as well as
different Information Elements (IEs) carried by RRC messages.

This section is organized as follow. First, the RRC instance and the UE context within the
OpenAirInterface software are presented. Then, the RRC Finite State Machine is described
as well as its protocol interfaces. Finally, the new Signalling Radio Bearers management and
System Information scheduling are discussed.

5.1.1 RRC Instance and UE Context
First step of the project was the definition of a new eNodeB RRC instance, namely eNB_
RRC_INST_NB, targeted for the NB-IoT technology. This has been declared in a new defs_
nb_iot.h header file in the openair2/RRC/LITE directory to allow a first separation between
the NB-IoT RRC module and the LTE one. Figure 5.1 shows the RRC instance taken from
the OpenAirInterface software.

eNB_RRC_INST_NB is a C-structure grouping the current carried data over System In-
formation Blocks and Signalling Radio Bearer but it also accommodates other RAN, PLMN
parameters and variables as well as configurations got from the eNodeB Application Layer.
However, because the reduced set of RRC functionalities for the NB-IoT standard, those
parameters related to Multimedia Broadcasting services, localization, measurement reports,
handover and Contention Based Access (CBA) of previous implementation have been removed.
Moreover, in this preliminary phase it was observed that some parts of the already existing
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Figure 5.1: RRC instance for NB-IoT within OpenAirInterface eNodeB software.

code were no more used since belonging to old OAI features, therefore these too have neither
been considered in the development of the new RRC instance.

The defs_nb_iot.h file contains also two data structures for UE context management within
the OpenAirInterface eNodeB. They are called rrc_eNB_ue_context_NB_t and eNB_RRC_
UE_NB_t respectively and are shown in Figure 5.2. As in previous case, major changes on
their definition were related to the absence of measurement reports capability, the missing
SRB2 and the introduction of SRB1bis whose implementation details will be given in subsec-
tion 5.1.4.

Figure 5.2: UE context data structures from OpenAirInterface code.

5.1.2 NB-IoT RRC State Machine
This section presents the Narrowband-IoT version of the RRC Finite State Machine, namely
rrc_enb_task_NB, resuming from what introduced in subsection 4.3.1. The RRC task and
associated functions for message processing and generation have been defined in the new
rrc_eNB_nb_iot.c file in openair2/RRC/LITE working directory.
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In this phase of the project no changes in the already existing layer’s working principles were
needed. Instead, it resulted necessary to introduce all Information Elements, message types
and data structures defined for NB-IoT. Moreover, those functions related to measurement
reports, handover and multicast services have been deleted for the NB-IoT software since not
implemented by the standard. The rrc_enb_task_NB logical scheme is shown in Figure 5.3
and its major functionalities are described here below.

Figure 5.3: OpenAirInterface rrc_enb_task_NB.

As discussed in subsection 4.3.1, the RRC’s state machine is triggered by inputs received
from other protocol layers by means of ITTI interface or primitives. The task is performed
through a “while” loop waiting for an uplink message that, once received, is processed by a
“switch-case” based on its identification (ITTI_MSG_ID). This triggers the corresponding
RRC procedure involving different functions. For instance, an input message from eNodeB
Application layer (APP) triggers the RRC configuration procedure (purple box) by activating
openair_rrc_eNB_configuration_NB and consequently initializes System Information and
Radio Bearer buffers (see subsubsection 4.3.1.2). More important, an uplink message over
CCCH from MAC layer or over DCCH from PDCP, triggers rrc_eNB_decode_ccch_NB or
rrc_eNB_decode_dcch_NB respectively. Decoding functions apply on their turn a “switch-
case” statement (orange or blue box) to distinguish among the received RRC’s CCCH/DCCH
information type and call the corresponding primitives for processing the NB-IoT messages
and eventually generate new ones. In the latter case, a full set of routines for building message
contents based on ASN.1 notation has been redefined for NB-IoT (yellow box). For instance,
do_RRCConnectionSetup_NB or do_RRCConnectionReject_NB.
During the definition of the NB-IoT RRC’s state machine, it was noticed that there were
no primitives allowing the generation of Master Information Block message based on ASN.1
notation. This was because in OpenAirInterface LTE software the broadcasting transmission
over PBCH channel was always managed directly at PHY layer bypassing RRC. Therefore,
in asn1_msg_nb_iot.c file was introduced the new do_MIB_NB function for Narrowband
Master Information Block’s generation which is triggered by the init_SI_NB primitive at con-
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figuration time. Finally, common functions to UE and eNodeB, like openair_rrc_top_init_
eNB_NB, have been redefined to address initialization and memory allocation for eNodeB
side only.

5.1.3 NB-IoT RRC Interfaces
The OpenAirInterface platform foresees a relatively large set of primitives for the exchange
of user- and control-plane information among different Layer 2 (L2) protocol entities. In
particular, given its role, the Radio Resource Control is the layer with the largest amount,
capable of direct communication with PDCP, RLC and MAC. Therefore, one important step
during this Master thesis involves the redefinition of the OAI interfaces between the new NB-
IoT RRC module and the other protocol layers. Like in previous cases, there was no worth
on changing the internal logic of each function but, for each of them, the feasibility and the
compliance with the NB-IoT standard’s characteristics were considered.

Figure 5.4 shows the full set of interfaces for OpenAirInterface L2 protocols. In the following,
the ones related to RRC will be described, however, it should be clear that many are correlated
with others from different layers. Thus, some further investigations have been conducted also
in PDCP and RLC layers.

Figure 5.4: OpenAirInterface RRC interfaces for NB-IoT.

As shown in Figure 5.4, on OpenAirInterface the full set of RRC primitives for NB-IoT can
be grouped in three major categories:

• Configuration Interfaces (in orange)

• Data Interfaces (in green)

• Operational Interfaces (in purple)
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5.1.3.1 Configuration Interfaces

Configuration Interfaces is the set of primitives used by the RRC layer to configure other
L2 protocol entities, i.e. PDCP, RLC and MAC. They have almost the common naming
part “NB_xxx_config_asn1_req” to indicate that are NB-IoT dedicated, their logic direction
(“_req”) and the compliance with the transport of ASN.1 variables. In the following, a brief
description of the Configuration Interfaces is given, highlighting the major changes introduced
for NB-IoT implementation purposes.

NB_rrc_pdcp_config_asn1_req: this primitive allows the Radio Resource Control to
configure or reconfigure the PDCP layer by establish, modify or release SRBs and DRBs
carried in the input lists. As already mentioned, NB-IoT introduces the usage of the Sig-
nalling Radio Bearer 1bis bypassing PDCP layer before security activation. Therefore,
this primitive allows the PDCP’s configuration only for DRBs and SRB1 by imposing
initial checking on Logical Channel Identity (LCID). At the same time, it was noticed
that OpenAirInterface not managed the case in which RRC Security Activation proce-
dure fails. In this case, as reported in [10] ch. 5.3.4.3 , the UE applies neither integrity
protection nor ciphering but continues using the configuration prior reception of the
Security Mode Command, i.e. the UE does not activate security. Therefore, it was
necessary to introduce a further value for the security_mode variable in input to the
primitive (i.e. security_mode = -1 ) to deactivate ciphering or integrity protection algo-
rithms at PDCP configuration time. This allows to skip any usage of security for PDCP
PDU through Data Interfaces, like NB_pdcp_data_ind and NB_rlc_data_req, in case
of Security Activation Failure. An example of Security Activation Failure is reported in
Figure 5.6 as will be discussed later.

NB_rrc_rlc_config_asn1_req: this primitive configures or removes RLC entities associ-
ated to SRBs and DRBs carried in the input lists according to their LCID. As mentioned
in subsection 2.5.2, NB-IoT allows RLC layer to work only in Acknowledged Mode (RLC-
AM) over DCCH and DTCH, while Transparent Mode (RLC-TM) is used over PCCH,
BCCH and CCCH as in legacy LTE. Thus, it was necessary to remove all conditions for
setup of RLC entities in Unacknowledged Mode (RLC-UM) which were mainly adopted
for eMBMS services over the no more used Multicast Traffic Channel (MTCH).

NB_rrc_mac_config_req_eNB: this primitive is used whenever RRC initiates a config-
uration or reconfiguration procedure. It instructs the MAC layer about common radio
resource and logical channel configurations, number of antenna ports utilized, cyclic
prefix type and others. Moreover, at initialization time it triggers specific functions
for directly configure the PHY layer. For instance, NB_phy_config_mib_eNB and
NB_phy_config_sib2_eNB (see subsection 5.2.1). Different from previous implementa-
tion, the primitive’s suffix “_eNB” indicates that the new interface addresses only the
eNodeB side of the OpenAirInterface platform.

5.1.3.2 Data Interfaces

Data Interfaces includes those primitives aiming for data transport within the OpenAirInter-
face protocol stack. They are indicated with the two common suffixes “_req” and “_ind” to
specify the direction “from” or “to” the RRC layer. From Figure 5.4, it can be observed that
there is no direct data communication between RLC and RRC but there is between RRC and
MAC or PDCP. This is because common control information over CCCH, BCCH and PCCH
goes through PDCP and RLC transparently and from MAC directly reaches RRC. On the
contrary, user-specific control data over DCCH needs PDCP and RLC entities establishment.

NB_rrc_data_req: this primitive is used whenever a default or dedicated RRC Connec-
tion Reconfiguration procedure is initiated or RRC messages as Security Mode Com-
mand or UE Capability Enquiry are transmitted over DCCH . It allows to specify the
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PDCP Transmission Mode over DRBs and SRBs that, in case of SRB1bis, should be set
to “PDCP_TRANSMISSION_MODE_TRANSPARENT” (i.e. bypass PDCP) based
on previous considerations.

NB_rrc_data_ind: this primitive is triggered directly by the PDCP layer whenever data
over SRBs should be transmitted to RRC. It initiates the decoding message procedure
over DCCH channel by generating the RRC_DCCH_DATA_IND message in the case
of ITTI communication interface or directly recalling the rrc_eNB_decode_dcch
function.

NB_mac_rrc_data_req_eNB: this data interface is mostly used by the MAC scheduler
whenever a transmission over BCCH or CCCH occurs. It is adopted to set the SDU
length and fill the corresponding channel buffer with the PDU. In OpenAirInterface LTE
software, this interface directly implements System Information messages scheduling
by checking the current frame’s and subframe’s number. However, as discussed in
subsubsection 2.5.4.3, the SI transmission for NB-IoT results completely different and
rather complex from the LTE one, therefore, it was decided to implement auxiliary
functions for the SI scheduling decision within this primitive. For instance, is_SIB1_NB
and is_SIB23_NB are used to identify frames for SIB1-NB and SIB23-NB transmission
respectively. In the definition of NB_mac_rrc_data_req_eNB two facts have been
considered. First, the introduction of a FAPI standard in the MAC-PHY interface
which assumes that repetitions over multiple subframes are managed at PHY layer (see
subsection 3.3.2). Second, the lack of an NB-IoT scheduler which was not completed
during the time of this Master thesis project. Therefore, it was only possible to imagine
the behaviour of the MAC layer jointly with FAPI specifications and consequently design
this interface doing some assumptions. These aspects will be resumed during this and
the next sections.

NB_mac_rrc_data_ind: this primitive is used for data reception over CCCH, for in-
stance, whenever an RRC Connection Request (i.e. Msg3) message is received. It
initiates the decoding procedure over SRB0 by generating the RRC_MAC_CCCH_
DATA_IND message or directly triggering the rrc_eNB_decode_ccch function.

5.1.3.3 Operational Interfaces

Operational Interfaces refer to those primitives aiming for UE context management, synchro-
nization and registration among the different layer entities within the OAI platform. Major
changes only concerned the introduction of NB-IoT Information Elements while the internal
logic was left the same as the already existing one. For this reason, no description of this
functions will be given in this chapter but refer directly to the OpenAirInterface code available
at [37].

5.1.4 NB-IoT Signalling Radio Bearers Management
The NB-IoT radio interface introduces a new Signalling Radio Bearer over the DCCH logical
channel, called SRB1bis, used for the transmission of RRC and NAS messages prior the
security activation. It is established implicitly with SRB1 adopting same configurations but
different LCID (i.e. 3) and, most relevant, without PDCP entity. Moreover, in NB-IoT the
low-priority Radio Bearer SRB2 is not applicable so that RRC messages carrying dedicated
NAS information are only transmitted over SRB1 also after any reconfiguration procedures.
Given this, the new RRC module required a different SRBs management for the NB-IoT case.

In this section, the Radio Bearer utilization over OpenAirInterface platform is first introduced,
then, the new approach for SRBs will be discussed through a description of an RRC message
flow for NB-IoT.
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5.1.4.1 Signalling Radio Bearers Lists

On OpenAirInterface, Radio Bearers are handled in the eNB_RRC_UE_NB_s data struc-
ture within the RRC UE’s context (see Figure 5.2). In particular, they are organized in
two kinds of lists: one for Data and the other for Signalling Radio Bearers, namely DRB_
configList and SRB_configList respectively. For each kind, two lists are then defined as
reported in Figure 5.5.

Figure 5.5: OpenAirInterface Signalling Radio Bearers lists.

This implementation choice is linked to the Transaction Identifier (TI) concept. Each couple
of RRC message, transmitted and received by the eNodeB, together with the RRC message
type define a Transaction. To correlate any RRC procedure with the corresponding UE
in RRC_CONNECTED state, the eNodeB assign a Transaction Identifier. This allows to
validate and identify the UE RRC’s response message also whenever more than one of the
same type are received by the eNodeB at the same time. As a result, the “_configList2”
is used to store the Radio Bearer configuration related to a given kind of RRC message
for different transactions (up to 3) while the “_configList” refers only to the current RRC
message managed by the eNodeB. Therefore, whenever a new RRC message is transmitted
in downlink, the first list (_configList) is used for setup the new SRB/DRB’s configurations
while the second (_configList2) is used to store and retrieve them once the RRC message is
received from the UE.

5.1.4.2 RRC Message Flow for NB-IoT

The introduction of SRB1bis over the new RRC module resulted more complicated than
planned on. 3GPP specifications [10] were not clear about the “implicit” establishment of
SRB1bis with SRB1 and which was the message that should mark the transition from one
to the other. After further investigations, [38] stated that SRB1bis (“no PDCP” or PDCP-
TM) could be used for carrying Security Mode Command (SMC) and Security Mode Failure
messages and, after receiving the SMC and performing security activation, the UE shall use
the SRB1 for Security Mode Complete.

As regard for the Bearers lists, the same approach previously described in Figure 5.5 was
maintained. However, the new NB-IoT data type, SRB_ToAddMod_NB_r13, does not
include the legacy srb_identity Information Element to distinguish among different Signalling
Radio Bearers. Therefore, the LCID was the only way to differentiate SRB1bis from SRB1
that is when “PDCP-TM/no PDCP” or “full/normal PDCP” is considered respectively. Over
the OpenAirInterface software the following identity was applied:

• SRB1bis: LCID = DCCH0 (3) → PDCP-TM/no PDCP

• SRB1: LCID = DCCH1 (1) → full/normal PDCP

Figure 5.6 shows the message sequence chart for the new Narrowband-IoT RRC module.
Both RRC messages and relevant RRC interfaces (in dashed blue lines) are reported. For
each message, logical channel type, channel identity and corresponding SRB are specified as
well as relevant carried information. Moreover, important elements for Bearers management
are highlighted in red and relevant procedures are point out through coloured boxes (green,
yellow or blue). A description of Figure 5.6 is then given below.
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Figure 5.6: OpenAirInterface RRC Message Flow for Narrowband-IoT, part 1.
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Figure 5.6: OpenAirInterface RRC Message Flow for Narrowband-IoT, part 2.

The first relevant implementation aspect concerns SRB1bis and SRB1 setup. As already men-
tion, the two Bearers have exactly same configuration, therefore, during rrc_eNB_generate_
RRCConnectionSetup_NB procedure only one of the two, SRB1bis, is configured and trans-
mitted inside the SRB_configList data structure over RRC Connection Setup. Once received
the message, the UE updates its RRC status and configures its protocol layer entities to go
through SRB1bis bypassing PDCP (“no PDCP/PDCP-TM”). To be noticed that at the same
time UE is also configured for reception over SRB1 since implicitly established together with
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SRB1bis.
Meantime, the eNodeB instructs PDCP and RLC layers through the corresponding interfaces.
In particular, it was decided to immediately setup a PDCP entity for SRB1 using the same
configuration list of SRB1bis but setting a LCID = 1 as if it were SRB1. Moreover, RLC enti-
ties are configured for both SRBs to activate the RLC Acknowledged mode (RLC-AM). Once
the RRC Connection Setup Complete message is received without errors, the eNodeB’s RRC
module considers both SRB1bis and SRB1 to be properly established over the UE context.
Afterwards, the Security Activation procedure starts with the transmission of Security Mode
Command (SMC) over SRB1bis, carrying Cyphering and Integrity protection algorithms. For
the sake of completeness, Figure 5.6 shows Data Interfaces (i.e NB_rrc_data_req, NB_rlc_
data_req and NB_mac_rlc_data_req_eNB) for the downlink transmission in the yellow box.
These highlight both LCID and PDCP Transmission Mode, that in the case of SRB1bis is
“TRANSPARENT”. Upon reception of Security Mode Command, the UE activates security
and turns SRB1bis into SRB1 i.e. changes from “no PDCP” to “normal PDCP”. Consequently,
UE transmits the Security Mode Complete message over SRB1. In this the case, the eNodeB
deactivates SRB1bis in the stored UE context and communication over SRB1 starts. However,
the security activation procedure might fail and in this case the UE should continue using the
configuration used prior the reception of the SMC, as reported in [10] chapter 5.3.4.3. That
means, the UE must use SRB1bis for Security Mode Failure. Beyond that, all subsequent
RRC messages are transmitted over SRB1 in RLC-AM mode but no SRB2 is activated.
SRB1 configurations can be modified and Data Radio Bearers might be setup through recon-
figuration procedure (i.e. RRCConnectionReconfiguration-NB). Upon the reception of RRC
Connection Reconfiguration Complete message, the eNodeB updates the RRC status in the
UE context, activates Radio Bearers and reconfigures the RLC, PDCP and MAC protocol
entities through the corresponding interfaces. Finally, dedicated reconfiguration (i.e. rrc_
eNB_generate_dedicatedRRCConnectionReconfiguration_NB) might be initiated by the S1
AP protocol for establish only up to two DRBs for NB-IoT.

5.1.5 NB-IoT System Information Message Transmission
This subsection discusses about NB-IoT System Information (SI) scheduling and transmission
over OpenAirInterface platform. At first, considerations on OAI MAC scheduler are given.
Then, some implementation aspects along with an exemplified time diagram are presented as
a possible solution for SI delivery.

As explained in subsubsection 2.5.4.3, System Information scheduling in NB-IoT presents
deep differences with respect to legacy LTE. Primarily, the reduced set of frequency resources
requires in most cases the transmission of SI-Messages over multiple subframes depending on
TBS. Moreover, the absence of NPDCCH indication for SI implies a fixed and ordered decoding
of MIB-NB and SIB1-NB before getting any other System Information Blocks. Furthermore,
development of SI-messages scheduling was made difficult by two other circumstances. From
one hand, the downlink NB-IoTMAC’s scheduler not completed during this Master project, on
the other, the introduction of FAPI standard within the MAC-PHY interface (see section 5.2).

5.1.5.1 OpenAirInterface MAC scheduler

The OpenAirInterface LTE software foresees a subframe-based MAC scheduler, namely eNB_
dlsch_ulsch_scheduler, for messages delivery over ULSCH and DLSCH channel in both LTE
TDD and FDD duplexing mode. Figure 5.7 shows the simplified scheduler scheme for FDD
case only where for each subframe the corresponding triggered functions are indicated.

As highlighted in Figure 5.7, the SI scheduling is managed by the schedule_SI function that,
due to implementation choice, is retrieved only every subframe #5 for each radio frame, pro-
viding both SIB1 and SI-Messages transmission. Internally, schedule_SI exploits the MAC-
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RRC interface mac_rrc_data_req whose NB-IoT version has been presented in subsubsec-
tion 5.1.3.2. This primitive aims to fill the BCCH’s PDU buffer and get the SDU length of
the SI message to be delivered from RRC. In particular, since in LTE one single subframe
is sufficient for any SI transmission, the mac_rrc_data_req only checks if the current radio
frame is SIB1 or SI-Message dedicated applying very simple formulas.

Therefore, a first improvement to implement NB-IoT was made on the frame checking al-
gorithms for SIB1-NB and Narrowband SI-Messages transmission in schedule_SI. Based on
considerations of subsubsection 2.5.4.3, the new NB_mac_rrc_data_req_eNB interface was
defined introducing two ad-hoc functions, namely is_SIB1_NB and is_SIB23_NB to check
whether a frame is SIB1-NB and/or SI-Message dedicated. This has required additional input
parameters like HSFN, Physical Cell Identity and schedulingInfoSIB1 not previously consid-
ered. Moreover, the new primitive was designed for addressing eNodeB side only and the
Master Information Block’s handling, missing in the previous implementation, was also intro-
duced. For the latter case, it was assumed that, whenever a MIB-NB PDU is requested from
RRC, a proper “flag” should be set by the scheduler through a new schedule_MIB function.
For implementation details of NB_mac_rrc_data_req_eNB and the related is_SIB1_NB
and is_SIB23_NB algorithms, refer to OAI code available at [37].
It is worth to point out that, also for NB-IoT case, it was decided to transmit only one single
SI-Message containing both the mandatory SIB2-NB and SIB3-NB at the same time, while
other System Information Blocks have not been considered.

As a result, Figure 5.8 shows a possible NB-IoT version of the subframe-based MAC scheduler
in which the relevant functions for MIB-NB, SIB1-NB and SI scheduling are highlighted. In
this case, the schedule_SI function is triggered two times: one for SIB1-NB transmission on
subframe #4, and one for SI-Message transmission whose starting subframe was assumed #1.
Moreover, schedule_MIB was introduced on subframe #0 to trigger the MIB-NB delivery. All
these functions exploit the NB_mac_rrc_data_req_eNB interface to filling the MAC BCCH
buffer getting SI-Message, SIB1-NB or MIB-NB’s PDU from RRC.

5.1.5.2 System Information Scheduling for NB-IoT

Since a NB-IoT MAC’s scheduler was not completed during this Master thesis, this phase
of the project has been more oriented to find possible scheduling solutions combining the
different system information’s requirements (see subsubsection 2.5.4.3).

Figure 5.9 proposes a subframe-based transmission scheme in which MIB-NB, SIB1-NB and
an SI-Message, carrying both SIB2-NB and SIB3-NB (namely SIB23-NB), are transmitted
over a period of 256 radio frames (i.e. SIB1-NB periodicity). PHY layer NB-IoT’s signals,
NSSS and PSSS, are also reported since relevant from the subframe occupation view point.
Different colours are used to distinguish transmissions, repetitions, periodicity or parameters
from different messages. SIB1-NB starting frames (in dark and light green) and associated
offset (in orange) are highlighted over the entire period.

With reference to subsubsection 2.5.4.3, the parameters setting for SIB1-NB and SIB23-NB
scheduling shown in Figure 5.9 is reported in Table 5.1.

Thus, based on Table 5.1, parameters reported in Table 5.2 were calculated.

The scheduling scheme presented in Figure 5.9 considers a Transport Block of 680 bits for SI,
that is the maximum allowed by NB-IoT, but shows the possibility of transmit the 8 subframes
required in one single frame. To this aim, the introduction of si_radioFrameOffset = 1 is
fundamental. It allows the SI-Window’s starting radio frame to shift with respect to SIB1-NB
transmissions which happen in all even frames, and respect to NSSS transmissions (in purple)
which fall in even frames too. Since the si_repetitionPattern is always an even number, the
System Information is delivered in every odd radio frames within the SI-Window following its
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SIB1-NB Parameters Value

schedulingInfoSIB1 1, 4, 7 or 10

Physical Cell Identity 0

SIB23-NB Parameters Value

si_windowLength 160 ms

si_periodicity 64 rf (radio frames)

si_repetitionPattern Every2ndRF

si_TB 680 bits

si_radioFrameOffset 1

downlinkBitmap Not Present

Table 5.1: SIB1-NB and SIB23-NB scheduling parameters for Figure 5.9.

SIB1-NB Parameters Value Note

Number of NPDSCH Repetitions 8 Based on Table 16.4.1.3-3 in [33] and
indicated by index “i” in Figure 5.9

SIB1-NB Starting Radio Frame 0 Based on Table 16.4.1.3-4 in [33] and
indicated in dark green in Figure 5.9

Offset for SIB1-NB repetitions 16 rf See Equation 2.1 (radio frames)

SIB23-NB Parameters Value Note

Required subframes for SI-Message 8 As reported in [10] for TBS grater that
120 bits

SI-Window starting Radio Frame 1
Based on Equation 2.2 setting:
• n = 0, since no mapping information
for SIB2-NB in the first SI-Message as
reported in [10].
• w = 16, T = 64 and Offset = 1.

SI-Window starting Subframe number 0 As reported in [10] chapter 5.2.3a

Table 5.2: Calculated SIB1-NB and SIB23-NB parameters for Figure 5.9.

repetition pattern, i.e. every2ndRF. As a result, SI transmission starts at subframe #1 and
all 8 subframes available can be used to deliver SIB23-NB. This is highlighted in dark and
light blue in Figure 5.9 and is in line with the previous supposed MAC scheduler presented
in Figure 5.8.

Overall, different scheduling solutions are possible with the same advantages in terms of SI
transmission just discussed. For instance, it is possible to increase the SIB1-NB repetitions
up to 16 by varying the schedulingInfoSIB1 parameter carried by the MIB-NB (see Table
16.4.1.3-3 in [33]). In this way, an UE should be able to acquire the SIB1-NB in less amount
of time and consequently starts the decoding of SI-Messages earlier. However, this implies a
reduction of radio resources available for other transmissions that can be compensated by a
proper trade-off among si_windowLength, si_peridicity and si_repetitionPattern parameters.
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5.2 A FAPI-Like Approach for OpenAirInterface
As introduced in chapter 3, the definition of a common Application Platform Interface (API)
ensures that system vendors can take advantages of the latest innovation in silicon and soft-
ware with minimum barriers and least amount of investments [9]. The establishment of such
scalable ecosystem also for future 5G deployments has not escaped to the OSA which has
quickly started adopting FAPI over the openairinterface5G software for both LTE and NB-
IoT standard.

In this chapter, the design of a Functional API (FAPI) within OAI’s MAC and PHY layer
for NB-IoT is discussed. First, the implementation of an Interface-Module (IF-Module) and
related primitives over the OpenAirInterface platform are described. Both FAPI’s configura-
tion and data transport aspects are considered (see section 3.3). Finally, a new PHY layer’s
approach for downlink transmission is presented.

5.2.1 IF-Module and Related Procedures
The first step towards FAPI adoption for NB-IoT, was the definition of a configurable and
dynamically loadable Interface Module (IF-Module) between MAC (L2) and PHY (L1) layers.
The module, whose data structure is called IF_Module_t, is instantiated at eNodeB initializa-
tion time and registered by both L1 and L2. It provides the transport mechanism for uplink,
downlink and configuration data in a FAPI-like approach.
However, instead of replicating the large set of FAPI messages for both P5 and P7 interfaces,
these have been grouped in only three primitives listed below and shown in Figure 5.10.

• UL_indication: enables all uplink information received in one Transmission Time In-
terval (TTI) to move from PHY to MAC layer. Comprises different FAPI P7 messages
including RACH.indication, RX_ULSCH.indication, HARQ.indication and others [9].
It provides Preambles, ULSCH SDU, ACK/NACK etc.

• schedule_response: enables scheduling results to be transmitted from MAC to PHY
layer. Comprises different downlink FAPI P7 messages like DL/UL_CONFIG.request,
TX.request and HI_DCI0.request [9]. It provides DLSCH, RACH, BCH or DCI SDUs.

• PHY_config_req: enables common and UE-specific PHY layer configuration procedure.
Comprises the FAPI P5/P7 messages CONFIG.request and UE_CONFIG.request [9].

Figure 5.10: IF-Module FAPI-like messages.
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Specifically, the three designed primitives are used to carrying fundamental PHY and MAC
layer information stored in three different data structures, namely PHY_Config_t, UL_
IND_t and Sched_Rsp_t (see Figure 5.11 and Figure 5.12). The latter ones are defined
in the IF_Module_nb_iot.h file held in openair2/PHY_INTERFACE directory, and contain
FAPI-compliant parameters defined from [9].

Following FAPI specifications, OpenAirInterface implements both P5-like configuration proce-
dure and P7-like subframe/data procedure which are reported in Figure 5.11 and Figure 5.12
respectively.

5.2.1.1 Configuration procedure

Figure 5.11: FAPI P5-like configuration procedure between OpenAirInterface MAC and PHY
layers.

As introduced in section 3.3, FAPI standard foresees a set of configuration procedures that
move the L1 through different states. However, as reported in Figure 5.11, no state machine
at physical layer was introduced but RRC statically configure PHY through NB_rrc_mac_
config_req_eNB interface. Before FAPI adoption, this primitive directly triggered the PHY
layer’s functions phy_config_sib1_eNB, phy_config_sib2_eNB and phy_config_dedicated_
eNB (yellow boxes) based on input parameters. After the IF-Module introduction, the RRC
layer should first fill the newly defined PHY_Config_t structure through NB_rrc_mac_
config_req_eNB interface, and then activates the PHY_config_req message to transmit the
stored data. The latter causes NB_phy_config_mib_eNB, NB_phy_config_sib2_eNB or
NB_phy_config_dedicated_eNB ’s activation that directly configures the physical layer. For
further implementation details refer to [37]. As shown in Figure 5.11, PHY_Config_t struc-
ture carries parameters related to subframe, radio frequency and specific NB-IoT configuration.
In this phase of the project, an important step was related on mapping the 3GPP compli-
ant variables got from NB_rrc_mac_config_req_eNB interface, into FAPI ones over the
PHY_Config_t structure. During this, it was noticed that a group of OAI’s parameters were
not considered by the FAPI standard for different logics. First, Small Cell Forum’s releases
only focus on eNodeB side of the Access Network, therefore all the RRC UE related informa-
tion were not reported. Moreover, some parameters were only for MAC layer configuration
and did not require to be transmitted to PHY layer. Last, but most relevant, there was a
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difference in the UE context management used by OpenAirInterface and the one foreseen in
FAPI standard. In OAI, once an UE context is established at eNodeB, all the user-specific
information is maintained over that until UE’s connection release. On the contrary, FAPI
UE-specific parameters are maintained in a semi-static configuration at PHY layer being sent
periodically over a specific UE_CONFIG.request message and deleted immediately after. As
a result, most of FAPI NB-IoT’s specific TLVs over the PHY_Config_t data structure does
not hold UE-Specific configurations but only common one.

5.2.1.2 Data procedure

Figure 5.12: FAPI P7-like subframe/data procedure between OpenAirInterface MAC and
PHY layers.

Similar approach as for configuration is applied for data procedures. The Sched_Rsp_t struc-
ture is filled by the MAC scheduler with common and UE-specific information using FAPI
parameters. Then, the schedule_response message is activated on a subframe-base pace, work-
ing as a condition signal to unlock the PHY access to Sched_Rsp_t contents. Once received,
schedule_response triggers the downlink transmission procedure, i.e. NB_phy_procedures_
eNB_TX.
Likewise, the UL_IND_t is filled by L1 with common’s, NPRACH and UE-specific’s param-
eters from corresponding procedures. Then, the UL_indication message is activated allowing
MAC layer to access and process data over the shared structure and consequently trigger the
scheduler, i.e. NB_eNB_dlsch_ulsch_scheduler. For further details on functions implemen-
tation refer to OAI code available at [37].

5.2.2 IF-Module Initialization
The IF-module is agnostic to L1 and L2 implementation details, being only the transport
mechanism which provides suitable interfaces. Its data structure, IF_Module_t, is just con-
stituted by function pointers that are associated to the corresponding messages at initializa-
tion time. To this aim, two recording functions are used, namely IF_Module_init_L2 and
IF_Module_init_L1, for the north and the south bound of the module respectively. They are
triggered to mapping the UL_indication, schedule_response and PHY_config_req’s imple-
mentations to the module function pointers. Figure 5.13 shows an example of the IF-Module’s
recording procedure while Figure 5.14 reports the module’s data structure from the OpenAir-
Interface code.

So far, the IF-Module just provides a function mapping mechanism since it is assumed that
both PHY and MAC layer are running over the same host. However, the module has been
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Figure 5.13: IF-Module recording procedure.

Figure 5.14: IF-Module data structure from OpenAirInterface code.

thought to provide also UDP or nFAPI transport mechanism for future implementations in
which PHY and higher layer parameters run over separate machines.

5.2.3 PHY Procedures for FAPI Approach
The introduction of a Functional API (FAPI) within the OAI software also affected the origi-
nal PHY layer procedure in both transmission and reception part. In this subsection, a first
overview on the new physical layer processes for NB-IoT and FAPI purposes is given. Then,
the design for the downlink procedure is presented, since constitutes part of the final work of
this Master’s thesis project.

With reference to subsection 4.3.2, the adoption of NB-IoT and FAPI standards has lead
to the design of a new NB_rxtx function whose flow diagram is reported in Figure 5.15 and
described here below.

As a preliminary step, it is assumed that only one single physical thread is running to perform
both Reception (RX) and Transmission (TX). As in original implementation, RX refers to
the current (n) subframe while TX to the future (n+4) one. After memory allocation of
both UL_INFO_t and Sched_Rsp_t data structures, the NB_rxtx function starts common
and UE-specific reception procedures. In this case, it first wakes up the NPRACH thread
and then, after filling UL_INFO_t, it activates the UL_indication message triggering MAC
layer’s processing and scheduler. The entire transmission procedure is directly managed over

60



5.2. A FAPI-Like Approach for OpenAirInterface

Figure 5.15: NB_rxtx flow chart.

the schedule_response function that first parses and stores the Sched_Rsp_t’s parameters in
corresponding PHY layer’s data structures (see green boxes in Figure 5.16), and then triggers
the NB_phy_procedure_eNB_TX. This is also compliant with what shown in Figure 5.12.

5.2.3.1 PHY Transmission procedure

In this subsection, the design of the new physical layer transmission procedure (i.e. NB_phy_
procedure_eNB_TX ) is described from a logical view point. Important assumptions on sched-
uler functionalities have been introduced to combine both NB-IoT and FAPI requirements
paying particular attention to system information delivery.

Figure 5.16 shows the logical steps of NB_phy_procedure_eNB_TX. Relevant PHY’s vari-
ables at stake with corresponding data structures are reported in green boxes while checking
conditions are highlighted in blue and purple. Moreover, all triggered functions are depicted
with corresponding transmitted messages. The entire procedure is then described here below
while for further details on functions implementation refer to OpenAirInterface code available
at [37].

In each subframe, the transmission buffer for each antenna port is flushed before generating
Narrowband Primary (NPSS) and Secondary (NSSS) Synchronization Signals. After, trans-
mission of System Information messages starts by applying frame and subframe’s checks (light
blue boxes).
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Whenever subframe #0 occurs, generate_npbch function is activated to transmit the Master
Information Block. Following FAPI approach, the NBCH PDU is provided by higher layers
over the npbch structure only at the beginning of MIB-NB period (i.e. every 640 ms). There-
fore, for each subframe #0, PHY checks whether a new MIB-NB PDU is present. If not,
MIB-NB’s sub-blocks transmission and repetition is performed (see subsubsection 3.3.2.1).
Similar approach is for SIB1-NB delivery, in which both frame and subframe are checked
exploiting is_SIB1_NB function. If a SIB1-NB transmission occurs, the npdsch_procedure
is triggered with the SIB1-NB’s PDU got from the ndlsch_SIB1 data structure.
For SI-Message delivery, the implementation resulted more complicated. At first, the availabil-
ity of empty subframes not occupied by NSSS, NPSS, MIB-NB and SIB1-NB transmission
is checked. Then, a strong assumption has been introduced. As discussed in subsubsec-
tion 3.3.2.2 about FAPI, it seems that also for SI transmissions over NDLSCH the PHY
layer should manage subframe repetitions. However, no FAPI message can instruct L1 about
fundamental System Information’s parameters like si_WindowLength, si_Periodicity or si_
RepetitionPattern (see Table 2.5). Therefore, it has been necessary to assume that the MAC
manages transmissions and repetitions by triggering the PHY layer in every subframe on
which a SI delivery occurs. This is realized through the Sched_Rsp_t’s content (see Fig-
ure 5.12). In the latter, a new System Information SDU is carried whenever an SI-Message
transmission starts, while no SDU is included when PHY layer subframe repetitions should
be performed (see Figure 5.9 with reference to dark and light blue subframes). Fortunately,
this approach was approved by the Small Cell Forum itself that kindly confirmed that Sys-
tem Information messages and higher layer repetitions described in [10] section 5.2.3a, are
expected to be handled by the MAC.
Afterwards, Random Access Response (RAR) and UE-Specific transmissions are initiated by
checking for available subframes (purple boxes) and verifying if ndlsch_ra and ndlsch[UE_id]
data structure have been previously filled by the schedule_response message. In this case, rep-
etitions are managed directly at PHY layer as reported by FAPI specifications.
Finally, generate_dci_top_NB is triggered to transmit DCI messages stored over the physical
layer DCI_pdu data structure.
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Figure 5.16: NB_phy_procedure_eNB_TX ’s logical steps with relevant PHY’s data struc-
tures.
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Chapter 6

Conclusions and Future Works

This Master thesis addresses the implementation of Narrowband Internet of Things (NB-IoT)
protocol stack on OpenAirInterface (OAI), focusing on Radio Resource Control (RRC) layer
and on developing a multi-vendor platform interface following the Functional Application
Platform Interface (FAPI) standard.

The first part of this work presents OpenAirInterface as a flexible platform towards an open
LTE ecosystem. The software architecture is discussed to logically describe and classify major
RRC procedures and primitives as well as give an insight on the basic PHY mechanism. In
this sense, the thesis represents a valid tool for any user that is willing to approach software
programming on OAI platform.
To bring NB-IoT functionalities onto OpenAirInterface, a new RRC layer state machine is
defined ensuring compliance with new data structures and Information Elements carried by
the protocol messages. A set of RRC interfaces for configuration, data exchange and context
management is proposed taking in consideration NB-IoT requirements on System Information
scheduling, PHY layer procedures and bearer management. As for the latter, a new approach
for Signalling Radio Bearers (SRBs) is introduced taking into account the new NB-IoT bearer,
SRB1bis. The Logical Channel Identity (LCID) is used to differentiate between SRB1bis and
SRB1 allowing to bypass PDCP configuration for the first but not for the second. Further
investigations have lead to identify the suitable RRC message after which SRB1bis is released
and the layer starts communicate over SRB1 only.
Furthermore, a deeper analysis on NB-IoT System Information (SI) scheduling is conducted.
The absence of NPDCCH indication for SI transmissions implies a fixed and ordered decoding
of MIB-NB and SIB1-NB before getting any further SIBs. This requires new scheduling
parameters and a different approach for resource mapping at subframe level. To this purpose,
a subframe-based transmission scheme is proposed, which optimizes radio frame utilization
considering the worst case of maximum SI-Message size.

Finally, previously developed aspects are fitted into the functional split introduced on Ope-
nAirInterface following FAPI standard. A configurable and dynamically loadable Interface
Module (IF-Module) is designed between OAI’s MAC and PHY layers to ensure multi-vendor
interoperability. Both P7 and P5 procedures are supported but instead of replicating the
large set of FAPI messages, the Module is equipped with only three basic primitives to pro-
vide both data and configuration capabilities. Moreover, introducing such functional split
along with NB-IoT requisites, has required to re-design PHY layer procedures of OAI, for
which a downlink transmission scheme is proposed.

The lack of experimental results in this six-month thesis work is justified by the complexity of
the context in which it fits. Developing a new 3GPP standard into an open-source platform
is generally addressed as long-term project by research communities. It takes time, especially
in the case of NB-IoT which revolutionizes many aspects of LTE protocol stack. In parallel,
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the convergence of a FAPI approach within OpenAirInterface made the achievement of such
results more challenging.
Nevertheless, the scenario on which this project takes place is of scientific relevance. It is
shown how open-source solutions, like OAI, break the boundary of proprietary and closed
systems by providing researchers with an environment in which they can rapidly prototype
and test latests mobile radio technologies, NB-IoT for instance. This approach is transforming
the telecommunication industry by providing flexible platforms which boosts innovation and
revolutionizes the future of mobile networks.

6.1 Future Work
This Master thesis opens a large number of possible extensions, prospectives and future works.

As for Radio Resource Control, OpenAirInterface still lacks from some basic messages and
related procedures, which are included also by NB-IoT: for instance, Paging, which is not
implemented at all, and RRCConnectionReestablishment which is directly rejected by OAI
eNodeB without implementing any related management procedure.
Moreover, 3GPP Rel.13 introduces the new RRC Suspend/Resume procedure to re-establish
an RRC connection by reducing the amount of signalling required. Bringing this feature into
OpenAirInterface will make it faster on handover processes or Radio Link Failures recovery
for instance, ensuring less bit over the air and low latency.
As this work mainly focuses on the radio software of OpenAirInterface, i.e. openairinterface5G,
there is room for new projects to upgrade OAI core network (openairCN ) to support Cellular
IoT (CIoT) optimizations for infrequent small data transmission.
Overall, the implementation of NB-IoT on OpenAirInterface platform still requires the devel-
opment of a MAC scheduler, and PHY layer encoding, modulation and scrambling procedures.
These are expected to be integrated before the end of 2017 by the research groups and indus-
tries currently working on the project.
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Abbreviations

3GPP 3rd Generation Partnership Project.

API Application Platform Interface.
APP Application.

BBU Baseband Unit.

CCCH Command Control Channel.
CIoT Cellular IoT.

DCCH Dedicated Control Channel.
DCI Downlink Control Indication.
DL Downlink.
DLSCH Downlink Shared Channel.
DMRS Demodulation Reference Signal.
DRB Data Radio Bearer.

EC-GSM Extended Coverage GSM.
eMBB Enhanced Mobile Broadband.
eMBMS Evolved Multimedia Broadcast Multicast Ser-

vices.
eMTC Enhanced Machine Type Communication.
EPC Evolved Packet Core.
EPS Evolved Packet System.
E-UTRAN Evolved Universal Terrestrial Radio Access Net-

work.

FAPI Functional Application Platform Interface.
FDD Frequency Division Duplexing.
FSM Finite State Machine.

HSFN Hyper-System Frame Number.
HSS Home Subscriber Server.

IE Information Element.
IoT Internet of Things.
ITTI Inter Task Interface.
ITU International Telecommunication Union.
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Abbreviations

LCID Logical Channel Identity.
LPWAN Low-Power Wide Area Network.
LTE Long Term Evolution.

MAC Medium Access Control.
MCL Maximum Coupling Loss.
MIB-NB Narrowband Master Information Block.
MME Mobility Management Entity.
mMTC Massive Machine Type Communication.
MTC Machine Type Communication.
MTCH Multicast Traffic Channel.

NAS Non-Access Stratum.
NBCH Narrowband Broadcast Channel.
NB-IoT Narrowband Internet of Things.
nFAPI Network Functional Application Platform In-

terface.
NMM Network Monitor Mode.
NPBCH Narrownband Physical Broadcast Channel.
NPDCCH Narrowband Physical Downlink Control Chan-

nel.
NPDSCH Narrowband Physical Downlink Shared Chan-

nel.
NPRACH Narrowband Physical Random Access Channel.
NPSS Narrowband Primary Synchronization Signal.
NPUSCH Narrowband Physical Uplink Shared Channel.
NRS Narrowband Reference Signal.
NSSS Narrowband Secondary Synchronization Sig-

nal.

OAI OpenAirInterface.
OFDM Orthogonal Frequency Division Multiplexing.
OSA OpenAirInterface Software Alliance.

PDCP Packet Data Convergence Protocol.
PGW Packet Data Network Gateway.
PHY Physical.
PMCH Physical Multicast Channel.
PNF Physical Network Function.

QoS Quality of Service.

RAN Radio Access Network.
RAT Radio Access Technology.
RF Radio Frequency.
RLC Radio Link Control.
RRC Radio Resource Control.
RRU Remote Radio Unit.

SCEF Service Capability Exposure Function.
SC-FDMA Single Carrier Frequency Division Multiple Ac-

cess.
SDR Software Defined Radio.
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Abbreviations

SFN System Frame Number.
SGW Serving Gateway.
SI System Information.
SIB System Information Block.
SRB Signalling Radio Bearer.

TBS Transport Block Size.
TI Transaction Identifier.
TLV Type-Length-Value.
TTI Transmission Time Interval.

UE User Equipment.
UHF Ultra High Frequency.
UL Uplink.
URLLC Ultra-Reliable Low Latency Communication.
USRP Universal Software Radio Peripheral.

VNF Virtual Network Function.
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