1,253 research outputs found
A superfluid 4He interferometer operating near 2 K
Matter-wave interferometers reveal some of the most fascinating phenomena of
the quantum world. Phase shifts due to rotation (the Sagnac effect) for
neutrons, free atoms and superfluid 3He reveal the connection of matter waves
to a non-rotating inertial frame. In addition, phase shifts in electron waves
due to magnetic vector potentials (the Aharonov-Bohm effect) show that physical
states can be modified in the absence of classical forces. We report here the
observation of interference induced by the Earth's rotation in superfluid 4He
at 2 K, a temperature 2000 times higher than previously achieved with 3He. This
interferometer, an analog of a dc-SQUID, employs a recently reported phenomenon
wherein superfluid 4He exhibits quantum oscillations in an array of sub-micron
apertures. We find that the interference pattern persists not only when the
aperture array current-phase relation is a sinusoidal function characteristic
of the Josephson effect, but also at lower temperatures where it is linear and
oscillations occur by phase slips. The modest requirements for the
interferometer (2 K cryogenics and fabrication of apertures at the level of
100nm) and its potential resolution suggest that, when engineering challenges
such as vibration isolation are met, superfluid 4He interferometers could
become important scientific probes.Comment: 8 pages, 2 figure
Chromatophore Activity during Natural Pattern Expression by the Squid Sepioteuthis lessoniana: Contributions of Miniature Oscillation
Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS). In this study we used semi-intact squid (Sepioteuthis lessoniana) displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between âfeatureâ and âbackgroundâ areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively
Electron-beam-induced shift in the apparent position of a pinned vortex in a thin superconducting film
When an electron beam strikes a superconducting thin film near a pinned
vortex, it locally increases the temperature-dependent London penetration depth
and perturbs the circulating supercurrent, thereby distorting the vortex's
magnetic field toward the heated spot. This phenomenon has been used to
visualize vortices pinned in SQUIDs using low-temperature scanning electron
microscopy. In this paper I develop a quantitative theory to calculate the
displacement of the vortex-generated magnetic-flux distribution as a function
of the distance of the beam spot from the vortex core. The results are
calculated using four different models for the spatial distribution of the
thermal power deposited by the electron beam.Comment: 9 pages, 6 figures, resubmitted to PRB with referee-suggested
revisions, includes new paragraph on numerical evaluatio
Submillimeter satellite radiometer Final engineering report
All solid-state superheterodyne Dicke radiometer for submillimeter wavelength
Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates
Angular momentum can be transferred to a trapped Bose-Einstein condensate by
distorting its shape with an external rotating field, provided the rotational
frequency is larger than a critical frequency fixed by the energy and angular
momentum of the excited states of the system. By using the Gross-Pitaevskii
equation and sum rules, we explore the dependence of such a critical frequency
on the multipolarity of the excitations and the asymmetry of the confining
potential. We also discuss its possible relevance for vortex nucleation in
rotating traps.Comment: 4 pages revtex, 2 figures include
Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates
The dynamics of vortices in trapped Bose-Einstein condensates are
investigated both analytically and numerically. In axially symmetric traps, the
critical rotation frequency for the metastability of an isolated vortex
coincides with the largest vortex precession frequency (or anomalous mode) in
the Bogoliubov excitation spectrum. As the condensate becomes more elongated,
the number of anomalous modes increases. The largest frequency of these modes
exceeds both the thermodynamic critical frequency and the nucleation frequency
at which vortices are created dynamically. Thus, anomalous modes describe not
only the critical rotation frequency for creation of the first vortex in an
elongated condensate but also the vortex precession in a single-component
spherical condensate.Comment: 4 pages revtex, 3 embedded figure
Coherently Scattering Atoms from an Excited Bose-Einstein Condensate
We consider scattering atoms from a fully Bose-Einstein condensed gas. If we
take these atoms to be identical to those in the Bose-Einstein condensate, this
scattering process is to a large extent analogous to Andreev reflection from
the interface between a superconducting and a normal metal. We determine the
scattering wave function both in the absence and the presence of a vortex. Our
results show a qualitative difference between these two cases that can be
understood as due to an Aharonov-Bohm effect. It leads to the possibility to
experimentally detect and study vortices in this way.Comment: 5 pages of ReVTeX and 2 postscript figure
Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate
A hydrodynamic description is used to study the normal modes of a vortex in a
zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the
circulating superfluid velocity far from the vortex core provides a small
perturbation that splits the originally degenerate normal modes of a
vortex-free condensate. The relative frequency shifts are small in all cases
considered (they vanish for the lowest dipole mode with |m|=1), suggesting that
the vortex is stable. The Bogoliubov equations serve to verify the existence of
helical waves, similar to those of a vortex line in an unbounded weakly
interacting Bose gas. In the large-condensate (small-core) limit, the
condensate wave function reduces to that of a straight vortex in an unbounded
condensate; the corresponding Bogoliubov equations have no bound-state
solutions that are uniform along the symmetry axis and decay exponentially far
from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We
have altered the material in Secs. 3B and 4 in connection with the normal
modes that have |m|=1. Our present treatment satisfies the condition that the
fundamental dipole mode of a condensate with (or without) a vortex should
have the bare frequency $\omega_\perp
DC and AC Josephson effects with superfluid Fermi atoms across a Feshbach resonance
We show that both DC and AC Josephson effects with superfluid Fermi atoms in
the BCS-BEC crossover can be described at zero temperature by a nonlinear
Schrodinger equation (NLSE). By comparing our NLSE with mean-field extended BCS
calculations, we find that the NLSE is reliable in the BEC side of the
crossover up to the unitarity limit. The NLSE can be used for weakly-linked
atomic superfluids also in the BCS side of the crossover by taking the
tunneling energy as a phenomenological parameter.Comment: 8 pages, 4 figures, presented at the Scientific Seminar on Physics of
Cold Trapped Atoms, 17th International Laser Physics Workshop (Trondheim,
June 30 - July 4, 2008
- âŠ