21 research outputs found

    Surface Microscopy - a New Approach to the Diagnosis of Cutaneous Pigmented Tumors

    No full text

    Incident light microscopy of pigmented skin lesions ZUR AUFLICHTMIKROSKOPIE VON PIGMENTTUMOREN DER HAUT

    No full text
    Clinical guidelines for the diagnosis of pigmented skin lesions are not always reliable. Incident light microscopy provides an interesting approach to solving this problem. For this investigation a stereomicroscope, a glass slide and immersion oil are used. The various in vivo criteria of this method, which go beyond the changes discernible by the naked eye, are correlated with the histopathological structures. Incident light microscopy opens up a new dimension of clinical morphology for the diagnosis and differential diagnosis of malignant melanoma, dysplastic nevi or non-melanocytic pigmented neoplasms and facilitates a more precise preoperative assessment of these lesions

    Generation of heterozygous (MCRIi030-A-1) and homozygous (MCRIi030-A-2) NR2F2/COUP-TFII knockout human iPSC lines

    No full text
    The NR2F2 gene encodes the transcription factor COUP-TFII, which is upregulated in embryonic mesoderm. Heterozygous variants in NR2F2 cause a spectrum of congenital anomalies including cardiac and gonadal phenotypes. We generated heterozygous (MCRIi030-A-1) and homozygous (MCRIi030-A-2) NR2F2-knockout induced pluripotent stem cell (iPSC) lines from human fibroblasts using a one-step protocol for CRISPR/Cas9 gene-editing and episomal-based reprogramming. Both iPSC lines exhibited a normal karyotype, typical pluripotent cell morphology, pluripotency marker expression, and the capacity to differentiate into the three embryonic germ layers. These lines will allow us to explore the role of NR2F2 during development and disease

    Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects

    No full text
    Abstract Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition
    corecore