72 research outputs found

    Layered Double Hydroxide Nanocluster: Aqueous, Concentrated, Stable, and Catalytically-Active Colloids towards Green Chemistry

    Get PDF
    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which avail in benign aqueous reaction media. Herein, we demonstrate the synthesis of a novel family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably-dispersed (transparent sol for >2 weeks), and catalytically-active colloids of nano LDHs (isotropic shape with the size of 7.8 nm by SAXS). Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and allows easy-separation from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical/chemical features of this colloid, the formation mechanism, and the capability as basic nanocatalysts in benign aqueous reaction systems

    High-Density Protein Loading on Hierarchically Porous LDH-Aluminum Hydroxide Composites with a Rational Mesostructure

    Get PDF
    Hierarchically porous biocompatible Mg-Al-Cl type LDH composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high molecular weight protein adsorptions. A linear relationship between effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA) is established following successful control of the structure of the LDH-Alhy composite. The threshold of mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibits extremely high capacity for protein loading (996 mg/g) due to a large mean mesopore diameter (> 30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO42− and Cl− aq.). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantity of proteins was clearly demonstrated, which potential uses in separation and purification in addition to a high-capacity storage medium.The present work is supported by JSPS-MAE SAKURA program (N°34148TB).The present work is partially supported by JSPS KAKENHI, and by a research grant from the Foundation for the Promotion of Ion Engineering

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis

    Get PDF
    The median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism

    Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis.

    Full text link
    peer reviewedThe median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism

    Hybrid and biohybrid layered double hydroxides for electrochemical analysis

    No full text
    International audienceLayered double hydroxides (LDH) are lamellar materials that have been extensively used as electrode modifiers. Nanostructured organic-inorganic materials can be designed by intercalation of organic or metallic complexes within the interlayer space of these materials or by the formation of composite materials based on biopolymers (alginate or chitosan) or biomolecules, such as enzymes. These hybrid or biohybrid materials have interesting properties applicable in electroanalytical devices. From an exhaustive review of the literature, the relevance of these hybrid and biohybrid LDH materials as electrode materials for electrochemical detection of species with an environmental or health impact is evaluated. The analytical characteristics (sensitivity and detection limit) of LDH-based amperometric sensors or biosensors are scrutinized

    Confined Growth of NiAl-Layered Double Hydroxide Nanoparticles Within Alginate Gel: Influence on Electrochemical Properties

    No full text
    International audienceNiAl Layered Double Hydroxide (LDH) alginate bionanocomposites were synthesized by confined coprecipitation within alginate beads. The NiAl based bionanocomposites were prepared either by impregnation by divalent and trivalent metal cations of pre-formed calcium cross-linked alginate beads or by using the metal cations (Ni2+, Al3+) as crosslinking cationic agents for the biopolymer network. The impregnation step was systematically followed by a soaking in NaOH solution to induce the LDH coprecipitation. Powder x-ray diffraction (PXRD), infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), thermogravimetry analysis (TGA), electron microscopies (SEM and TEM) confirmed the biotemplated coprecipitation of LDH nanoparticles ranging from 75 to 150 nm for both strategies. The drying of the LDH@alginate beads by supercritical CO2 drying process led to porous bionanocomposite aerogels when Ca2+ cross-linked alginate beads were used. Such confined preparation of NiAl LDH was extended to bionanocomposite films leading to similar results. The permeability and the electrochemical behavior of these NiAl@alginate bionanocomposites, as thin films coated on indium tin oxide (ITO) electrodes, were investigated by cyclic voltammetry, demonstrating an efficient diffusion of the K4Fe(CN)6 redox probe through the LDH@alginate based films and the improvement of the electrochemical accessibility of the Ni sites
    • …
    corecore