213 research outputs found

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    How well do blood folate concentrations predict dietary folate intakes in a sample of Canadian lactating women exposed to high levels of folate? An observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1998, mandatory folic acid fortification of white flour and select cereal grain products was implemented in Canada with the intention to increase dietary folate intakes of reproducing women. Folic acid fortification has produced a dramatic increase in blood folate concentrations among reproductive age women, and a reduction in neural tube defect (NTD)-affected pregnancies. In response to improved blood folate concentrations, many health care professionals are asking whether a folic acid supplement is necessary for NTD prevention among women with high blood folate values, and how reliably high RBC folate concentrations predict folate intakes shown in randomized controlled trials to be protective against NTDs. The objective of this study was to determine how predictive blood folate concentrations and folate intakes are of each other in a sample of well-educated lactating Canadian women exposed to high levels of synthetic folate.</p> <p>Methods</p> <p>The relationship between blood folate concentrations and dietary folate intakes, determined by weighed food records, were assessed in a sample of predominantly university-educated lactating women (32 ± 4 yr) at 4-(n = 53) and 16-wk postpartum (n = 55).</p> <p>Results</p> <p>Median blood folate concentrations of all participants were well above plasma and RBC folate cut-off levels indicative of deficiency (6.7 and 317 nmol/L, respectively) and all, except for 2 subjects, were above the cut-off for NTD-risk reduction (>906 nmol/L). Only modest associations existed between total folate intakes and plasma (r = 0.46, <it>P </it>< 0.001) and RBC (r = 0.36, <it>P </it>< 0.01) folate concentrations at 16-wk postpartum. Plasma and RBC folate values at 16-wk postpartum correctly identified the quartile of folate intake of only 26 of 55 (47%) and 18 of 55 (33%) of subjects, respectively. The mean RBC folate concentration of women consuming 151–410 μg/d of synthetic folate (2<sup>nd </sup>quartile of intake) did not differ from that of women consuming >410 μg/d (3<sup>rd </sup>and 4<sup>th </sup>quartile).</p> <p>Conclusion</p> <p>Folate intakes, estimated by food composition tables, and blood folate concentrations are not predictive of each other in Canadian lactating women exposed to high levels of folate. Synthetic intakes > 151–410 μg/d in these women produced little additional benefit in terms of maximizing RBC content. More studies are needed to examine the relationship between blood folate concentration and NTD risk. Until data from such studies are available, women planning a pregnancy should continue to consume a daily folic acid supplement of 400 μg.</p

    Listening to music reduces eye movements

    Get PDF
    Listening to music can change the way that people visually experience the environment, probably as a result of an inwardly directed shift of attention. We investigated whether this attentional shift can be demonstrated by reduced eye movement activity, and if so, whether that reduction depends on absorption. Participants listened to their preferred music, to unknown neutral music, or to no music while viewing a visual stimulus (a picture or a film clip). Preference and absorption were significantly higher for the preferred music than for the unknown music. Participants exhibited longer fixations, fewer saccades, and more blinks when they listened to music than when they sat in silence. However, no differences emerged between the preferred music condition and the neutral music condition. Thus, music significantly reduces eye movement activity, but an attentional shift from the outer to the inner world (i.e., to the emotions and memories evoked by the music) emerged as only one potential explanation. Other explanations, such as a shift of attention from visual to auditory input, are discussed

    Self-assisted Amoeboid Navigation in Complex Environments

    Full text link
    Background: Living cells of many types need to move in response to external stimuli in order to accomplish their functional tasks; these tasks range from wound healing to immune response to fertilization. While the directional motion is typically dictated by an external signal, the actual motility is also restricted by physical constraints, such as the presence of other cells and the extracellular matrix. The ability to successfully navigate in the presence of obstacles is not only essential for organisms, but might prove relevant in the study of autonomous robotic motion. Methodology/principal findings: We study a computational model of amoeboid chemotactic navigation under differing conditions, from motion in an obstacle-free environment to navigation between obstacles and finally to moving in a maze. We use the maze as a simple stand-in for a motion task with severe constraints, as might be expected in dense extracellular matrix. Whereas agents using simple chemotaxis can successfully navigate around small obstacles, the presence of large barriers can often lead to agent trapping. We further show that employing a simple memory mechanism, namely secretion of a repulsive chemical by the agent, helps the agent escape from such trapping. Conclusions/significance: Our main conclusion is that cells employing simple chemotactic strategies will often be unable to navigate through maze-like geometries, but a simple chemical marker mechanism (which we refer to as "self-assistance") significantly improves success rates. This realization provides important insights into mechanisms that might be employed by real cells migrating in complex environments as well as clues for the design of robotic navigation strategies. The results can be extended to more complicated multi-cellular systems and can be used in the study of mammalian cell migration and cancer metastasis

    Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures.</p> <p>Methods</p> <p>We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of potential stem cell markers CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts, mRNA expression of these markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated <it>in vivo</it>.</p> <p>Results</p> <p>All five putative stem cell markers showed distinct expression patterns in the tumours examined. Two patient-derived cell lines highly expressed CD133 (> 85% of positive cells) and three other cell lines had an expression level of about 50% whereas in long-term culture based models CD133 expression ranged only from 0 to 20%. In 8/14 cell lines, more than 80% of the cells were positive for CD24 and 11/14 were over 70% positive for CD44. 10/14 cell lines expressed CDCP1 on ≥ 83% of cells. CXCR4 expression was determined solely on 94 L and SW480.</p> <p>Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated surface markers and showed single cell fractions expressing up to three markers simultaneously.</p> <p>Statistical analysis revealed that the CXCR4 mRNA level correlates negatively with the protein expression of CD133, CD44, CD24 and CDCP1 in cell lines and xenografts.</p> <p>A lower differentiation grade of donor material correlated with a higher CDCP1 mRNA expression level in the respective tumour model.</p> <p><it>In vivo </it>growth behaviour studies of SW620 revealed significantly higher take rates and shorter doubling times in the tumour growth of CD133 positive subclones in comparison to the unsorted cell line or CD133 negative subclones.</p> <p>Conclusions</p> <p>Our data revealed correlations in the expression of surface markers CD44 and CD24 as well as CD44 and CDCP1 and strongly suggest that CD133 is a stem cell marker within our colon carcinoma panel. Further studies will elucidate its role as a potential therapeutic target.</p

    Patterns and mechanisms of early Pliocene warmth

    Get PDF
    About five to four million years ago, in the early Pliocene epoch, Earth had a warm, temperate climate. The gradual cooling that followed led to the establishment of modern temperature patterns, possibly in response to a decrease in atmospheric CO2 concentration, of the order of 100 parts per million, towards preindustrial values. Here we synthesize the available geochemical proxy records of sea surface temperature and show that, compared with that of today, the early Pliocene climate had substantially lower meridional and zonal temperature gradients but similar maximum ocean temperatures. Using an Earth system model, we show that none of the mechanisms currently proposed to explain Pliocene warmth can simultaneously reproduce all three crucial features. We suggest that a combination of several dynamical feedbacks underestimated in the models at present, such as those related to ocean mixing and cloud albedo, may have been responsible for these climate conditions

    Extensive Adaptive Changes Occur in the Transcriptome of Streptococcus agalactiae (Group B Streptococcus) in Response to Incubation with Human Blood

    Get PDF
    To enhance understanding of how Streptococcus agalactiae (group B streptococcus, GBS) adapts during invasive infection, we performed a whole-genome transcriptome analysis after incubation with whole human blood. Global changes occurred in the GBS transcriptome rapidly in response to blood contact following shift from growth in a rich laboratory medium. Most (83%) of the significantly altered transcripts were down-regulated after 30 minutes of incubation in blood, and all functional categories of genes were abundantly represented. We observed complex dynamic changes in the expression of transcriptional regulators and stress response genes that allow GBS to rapidly adapt to blood. The transcripts of relatively few proven virulence genes were up-regulated during the first 90 minutes. However, a key discovery was that genes encoding proteins involved in interaction with the host coagulation/fibrinolysis system and bacterial-host interactions were rapidly up-regulated. Extensive transcript changes also occurred for genes involved in carbohydrate metabolism, including multi-functional proteins and regulators putatively involved in pathogenesis. Finally, we discovered that an incubation temperature closer to that occurring in patients with severe infection and high fever (40°C) induced additional differences in the GBS transcriptome relative to normal body temperature (37°C). Taken together, the data provide extensive new information about transcriptional adaptation of GBS exposed to human blood, a crucial step during GBS pathogenesis in invasive diseases, and identify many new leads for molecular pathogenesis research

    IL-10 Blocks the Development of Resistance to Re-Infection with Schistosoma mansoni

    Get PDF
    Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni
    • …
    corecore