35 research outputs found

    Carbogen breathing increases prostate cancer oxygenation: a translational MRI study in murine xenografts and humans

    Get PDF
    Hypoxia has been associated with poor local tumour control and relapse in many cancer sites, including carcinoma of the prostate. This translational study tests whether breathing carbogen gas improves the oxygenation of human prostate carcinoma xenografts in mice and in human patients with prostate cancer. A total of 23 DU145 tumour-bearing mice, 17 PC3 tumour-bearing mice and 17 human patients with prostate cancer were investigated. Intrinsic susceptibility-weighted MRI was performed before and during a period of carbogen gas breathing. Quantitative R2* pixel maps were produced for each tumour and at each time point and changes in R2* induced by carbogen were determined. There was a mean reduction in R2* of 6.4% (P=0.003) for DU145 xenografts and 5.8% (P=0.007) for PC3 xenografts. In all, 14 human subjects were evaluable; 64% had reductions in tumour R2* during carbogen inhalation with a mean reduction of 21.6% (P=0.0005). Decreases in prostate tumour R2* in both animal models and human patients as a result of carbogen inhalation suggests the presence of significant hypoxia. The finding that carbogen gas breathing improves prostate tumour oxygenation provides a rationale for testing the radiosensitising effects of combining carbogen gas breathing with radiotherapy in prostate cancer patients

    Prominent Bone Loss Mediated by RANKL and IL-17 Produced by CD4+ T Cells in TallyHo/JngJ Mice

    Get PDF
    Increasing evidence that decreased bone density and increased rates of bone fracture are associated with abnormal metabolic states such as hyperglycemia and insulin resistance indicates that diabetes is a risk factor for osteoporosis. In this study, we observed that TallyHo/JngJ (TH) mice, a polygenic model of type II diabetes, spontaneously developed bone deformities with osteoporotic features. Female and male TH mice significantly gained more body weight than control C57BL/6 mice upon aging. Interestingly, bone density was considerably decreased in male TH mice, which displayed hyperglycemia. The osteoblast-specific bone forming markers osteocalcin and osteoprotegerin were decreased in TH mice, whereas osteoclast-driven bone resorption markers such as IL-6 and RANKL were significantly elevated in the bone marrow and blood of TH mice. In addition, RANKL expression was prominently increased in CD4+ T cells of TH mice upon T cell receptor stimulation, which was in accordance with enhanced IL-17 production. IL-17 production in CD4+ T cells was directly promoted by treatment with leptin while IFN-γ production was not. Moreover, blockade of IFN-γ further increased RANKL expression and IL-17 production in TH-CD4+ T cells. In addition, the osteoporotic phenotype of TH mice was improved by treatment with alendronate. These results strongly indicate that increased leptin in TH mice may act in conjunction with IL-6 to preferentially stimulate IL-17 production in CD4+ T cells and induce RANKL-mediated osteoclastogenesis. Accordingly, we propose that TH mice could constitute a beneficial model for osteoporosis

    Schedule-selective biochemical modulation of 5-fluorouracil in advanced colorectal cancer – a phase II study

    Get PDF
    BACKGROUND: 5-fluorouracil remains the standard therapy for patients with advanced/metastatic colorectal cancer. Pre-clinical studies have demonstrated the biological modulation of 5-fluorouracil by methotrexate and leucovorin. This phase II study was initiated to determine the activity and toxicity of sequential methotrexate – leucovorin and 5-fluorouracil chemotherapy in patients with advanced colorectal cancer. METHODS: Ninety-seven patients with metastatic colorectal cancer were enrolled onto the study. Methotrexate – 30 mg/m(2) was administered every 6 hours for 6 doses followed by a 2 hour infusion of LV – 500 mg/m(2). Midway through the leucovorin infusion, patients received 5-fluorouracil – 600 mg/m(2). This constituted a cycle of therapy and was repeated every 2 weeks until progression. RESULTS: The median age was 64 yrs (34–84) and the Eastern Cooperative Group Oncology performance score was 0 in 37%, 1 in 55% and 2 in 8% of patients. Partial and complete responses were seen in 31% of patients with a median duration of response of 6.4 months. The overall median survival was 13.0 months. The estimated 1-year survival was 53.7%. Grade III and IV toxic effects were modest and included mucositis, nausea and vomiting. CONCLUSIONS: This phase II study supports previously reported data demonstrating the modest clinical benefit of 5-FU modulation utilizing methotrexate and leucovorin in patients with metastatic colorectal cancer. Ongoing studies evaluating 5-fluorouracil modulation with more novel agents (Irinotecan and/or oxaliplatin) are in progress and may prove encouraging

    Bone Is Not Essential for Osteoclast Activation

    Get PDF
    Background: The mechanism whereby bone activates resorptive behavior in osteoclasts, the cells that resorb bone, is unknown. It is known that avb3 ligands are important, because blockade of avb3 receptor signaling inhibits bone resorption, but this might be through inhibition of adhesion or migration rather than resorption itself. Nor is it known whether avb3 ligands are sufficient for resorption the consensus is that bone mineral is essential for the recognition of bone as the substrate appropriate for resorption. Methodology/Principal Findings: Vitronectin- but not fibronectin-coated coverslips induced murine osteoclasts to secrete tartrate-resistant acid phosphatase, as they do on bone. Osteoclasts incubated on vitronectin, unlike fibronectin, formed podosome belts on glass coverslips, and these were modulated by resorption-regulating cytokines. Podosome belts formed on vitronectin-coated surfaces whether the substrates were rough or smooth, rigid or flexible. We developed a novel approach whereby the substrate-apposed surface of cells can be visualized in the scanning electron microscope. With this approach, supported by transmission electron microscopy, we found that osteoclasts on vitronectin-coated surfaces show ruffled borders and clear zones characteristic of resorbing osteoclasts. Ruffles were obscured by a film if cells were incubated in the cathepsin inhibitor E64, suggesting that removal of the film represents substrate-degrading behavior. Analogously, osteoclasts formed resorption-like trails on vitronectin-coated substrates. Like bone resorption, these trails were dependent upon resorbogenic cytokines and were inhibited by E64. Bone mineral induced actin rings and surface excavation only if first coated with vitronectin. Fibronectin could not substitute in any of these activities, despite enabling adhesion and cell spreading. Conclusions/Significance: Our results show that ligands avb3 are not only necessary but sufficient for the induction of resorptive behavior in osteoclasts; and suggest that bone is recognized through its affinity for these ligands, rather than by its mechanical or topographical attributes, or through a putative ‘mineral receptor’

    Distinctive subdomains in the resorbing surface of osteoclasts.

    Get PDF
    We employed a novel technique to inspect the substrate-apposed surface of activated osteoclasts, the cells that resorb bone, in the scanning electron microscope. The surface revealed unexpected complexity. At the periphery of the cells were circles and crescents of individual or confluent nodules. These corresponded to the podosomes and actin rings that form a 'sealing zone', encircling the resorptive hemivacuole into which protons and enzymes are secreted. Inside these rings and crescents the osteoclast surface was covered with strips and patches of membrane folds, which were flattened against the substrate surface and surrounded by fold-free membrane in which many orifices could be seen. Corresponding regions of folded and fold-free membrane were found by transmission electron microscopy in osteoclasts incubated on bone. We correlated these patterns with the distribution of several proteins crucial to resorption. The strips and patches of membrane folds corresponded in distribution to vacuolar H+-ATPase, and frequently co-localized with F-actin. Cathepsin K localized to F-actin-free foci towards the center of cells with circular actin rings, and at the retreating pole of cells with actin crescents. The chloride/proton antiporter ClC-7 formed a sharply-defined band immediately inside the actin ring, peripheral to vacuolar H+-ATPase. The sealing zone of osteoclasts is permeable to molecules with molecular mass up to 10,000. Therefore, ClC-7 might be distributed at the periphery of the resorptive hemivacuole in order to prevent protons from escaping laterally from the hemivacuole into the sealing zone, where they would dissolve the bone mineral. Since the activation of resorption is attributable to recognition of the αVβ3 ligands bound to bone mineral, such leakage would, by dissolving bone mineral, release the ligands and so terminate resorption. Therefore, ClC-7 might serve not only to provide the counter-ions that enable proton pumping, but also to facilitate resorption by acting as a 'functional sealing zone'

    Can localised 19F magnetic resonance spectroscopy pharmacokinetics of 5FU in colorectal metastases predict clinical response?

    Get PDF
    Background 5-Fluorouracil remains widely used in colorectal cancer treatment more than 40 years after its development. 19F magnetic resonance spectroscopy can be used in vivo to measure 5FU’s half-life and metabolism to cytotoxic fluoronucleotides. Previous studies have shown better survival associated with longer 5FU tumour half-life. This work investigated 5FU pharmacokinetics in liver metastases of colorectal cancer. Methods A total of 32 subjects with colorectal cancer undergoing 5FU treatment, 15 of whom had liver metastases, were examined in a 1.5T MRI scanner, using a large coil positioned over the liver. Non-localised spectra were acquired in 1-min blocks for 32 min after injection of a 5FU bolus. The 5FU half-life was measured in each subject, and averaged spectra were examined for the presence of fluoronucleotides. Associations with progression-free survival were assessed. Results No association was observed between 5FU halflife, tumour burden and survival. Half-lives were all shorter than those associated with improved survival in the literature. Remarkably, in the group with liver metastases, high levels of fluoronucleotides were associated with poorer survival; this counterintuitive result may be due to the higher levels of fluoronucleotides (whose level is higher in tumour tissue than in normal liver) in patients with higher tumour burdens. Conclusions It is recommended that future studies use chemical shift imaging at higher field strengths to better resolve tumour from normal liver. Non-localised spectroscopy retains prognostic potential by enabling straightforward detection of fluoronucleotides, which are present at very low concentrations distributed throughout the tissue
    corecore