195 research outputs found

    From pupil to the brain: New insights for studying cortical plasticity through pupillometry

    Get PDF
    Pupil size variations have been associated with changes in brain activity patterns related with specific cognitive factors, such as arousal, attention, and mental effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the brain, is considered to be a key regulator of cognitive control on pupil size, with changes in pupil diameter corresponding to the release of norepinephrine (NE). Advances in eye-tracking technology and open-source software have facilitated accurate pupil size measurement in various experimental settings, leading to increased interest in using pupillometry to track the nervous system activation state and as a potential biomarker for brain disorders. This review explores pupillometry as a non-invasive and fully translational tool for studying cortical plasticity starting from recent literature suggesting that pupillometry could be a promising technique for estimating the degree of residual plasticity in human subjects. Given that NE is known to be a critical mediator of cortical plasticity and arousal, the review includes data revealing the importance of the LC-NE system in modulating brain plasticity and pupil size. Finally, we will review data suggesting that pupillometry could provide a quantitative and complementary measure of cortical plasticity also in pre-clinical studies

    Synaptic plasticity and signaling in rett syndrome

    Get PDF
    Rett syndrome (RTT) is a disorder that is caused in the majority of cases by mutations in the gene methyl-CpG-binding protein-2 (MeCP2). Children with RTT are generally characterized by normal development up to the first year and a half of age, after which they undergo a rapid regression marked by a deceleration of head growth, the onset of stereotyped hand movements, irregular breathing, and seizures. Animal models of RTT with good construct and face validity are available. Their analysis showed that homeostatic regulation of MeCP2 gene is necessary for normal CNS functioning and that multiple complex pathways involving different neuronal and glial cell types are disrupted in RTT models. However, it is increasingly clear that RTT pathogenetic mechanisms converge at synaptic level impairing synaptic transmission and plasticity. We review novel findings showing how specific synaptic mechanisms and related signaling pathways are affected in RTT models.Rett syndrome (RTT) is a disorder that is caused in the majority of cases by mutations in the gene methyl-CpG-binding protein-2 (MeCP2). Children with RTT are generally characterized by normal development up to the first year and a half of age, after which they undergo a rapid regression marked by a deceleration of head growth, the onset of stereotyped hand movements, irregular breathing, and seizures. Animal models of RTT with good construct and face validity are available. Their analysis showed that homeostatic regulation of MeCP2 gene is necessary for normal CNS functioning and that multiple complex pathways involving different neuronal and glial cell types are disrupted in RTT models. However, it is increasingly clear that RTT pathogenetic mechanisms converge at synaptic level impairing synaptic transmission and plasticity. We review novel findings showing how specific synaptic mechanisms and related signaling pathways are affected in RTT models. © 2013 Wiley Periodicals, Inc

    Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats

    Get PDF
    Ischemic stroke insults may lead to chronic functional limitations that adversely affect patient movements. Partial motor recovery is thought to be sustained by neuronal plasticity, particularly in areas close to the lesion site. It is still unknown if treatments acting exclusively on cortical plasticity of perilesional areas could result in behavioral amelioration. We tested whether enhancing plasticity in the ipsilesional cortex using local injections of chondroitinase ABC (ChABC) could promote recovery of skilled motor function in a focal cortical ischemia of forelimb motor cortex in rats. Using the skilled reaching test, we found that acute and delayed ChABC treatment induced recovery of impaired motor skills in treated rats. vGLUT1, vGLUT2, and vGAT staining indicated that functional recovery after acute ChABC treatment was associated with local plastic modification of the excitatory cortical circuitry positive for VGLUT2. ChABC effects on vGLUT2 staining were present only in rats undergoing behavioral training. Thus, the combination of treatments targeting the CSPG component of the extracellular matrix in perilesional areas and rehabilitation could be sufficient to enhance functional recovery from a focal stroke. \ua9 2013 The Author

    From pupil to the brain : new insights for studying cortical plasticity through pupillometry

    Get PDF
    Pupil size variations have been associated with changes in brain activity patterns related with specific cognitive factors, such as arousal, attention, and mental effort. The locus coeruleus (LC), a key hub in the noradrenergic system of the brain, is considered to be a key regulator of cognitive control on pupil size, with changes in pupil diameter corresponding to the release of norepinephrine (NE). Advances in eye-tracking technology and open-source software have facilitated accurate pupil size measurement in various experimental settings, leading to increased interest in using pupillometry to track the nervous system activation state and as a potential biomarker for brain disorders. This review explores pupillometry as a non-invasive and fully translational tool for studying cortical plasticity starting from recent literature suggesting that pupillometry could be a promising technique for estimating the degree of residual plasticity in human subjects. Given that NE is known to be a critical mediator of cortical plasticity and arousal, the review includes data revealing the importance of the LC-NE system in modulating brain plasticity and pupil size. Finally, we will review data suggesting that pupillometry could provide a quantitative and complementary measure of cortical plasticity also in preclinical studies

    A richness that cures

    Get PDF
    A study in Nature by Fischer et al. shows that environmental enrichment or increasing histone acetylation rescue the ability to form new memories and re-establish access to remote memories even in the presence of brain degeneration. Chromatin remodeling may be the final gate environmental enrichment opens to enhance plasticity and represents a promising target for therapeutical intervention in neurodegenerative diseases

    Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity

    Get PDF
    Experience-dependent plasticity is the ability of brain circuits to undergo molecular, structural and functional changes as a function of neural activity. Neural activity continuously shapes our brain during all the stages of our life, from infancy through adulthood and beyond. Epigenetic modifications of histone proteins and DNA seem to be a leading molecular mechanism to modulate the transcriptional changes underlying the fine-tuning of synaptic connections and circuitry rewiring during activity-dependent plasticity. The recent discovery that cytosine methylation is an epigenetic mark particularly dynamic in brain cells has strongly increased the interest of neuroscientists in understanding the role of covalent modifications of DNA in activity-induced remodeling of neuronal circuits. Here, we provide an overview of the role of DNA methylation and hydroxylmethylation in brain plasticity both during adulthood, with emphasis on learning and memory related processes, and during postnatal development, focusing specifically on experience-dependent plasticity in the visual cortex

    Novel siRNA delivery strategy: A new "strand" in CNS translational medicine?

    Get PDF
    RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action. \ua9 2013 Springer Basel

    3D printable device for automated operant conditioning in the mouse

    Get PDF
    Operant conditioning is a classical paradigm and a standard technique used in experimental psychology in which animals learn to perform an action in order to achieve a reward. By using this paradigm, it is possible to extract learning curves and measure accurately reaction times. Both these measurements are proxy of cognitive capabilities and can be used to evaluate the effectiveness of therapeutic interventions in mouse models of disease. Here we describe a fully 3D printable device that is able to perform operant conditioning on freely moving mice, while performing real-time tracking of the animal position. We successfully trained 6 mice, showing stereotyped learning curves that are highly reproducible across mice and reaching more than 70% of accuracy after two days of conditioning. Different products for operant conditioning are commercially available, though most of them do not provide customizable features and are relatively expensive. This data demonstrate that this system is a valuable alternative to available state-of-the-art commercial devices, representing a good balance between performance, cost, and versatility in its use.Significance Statement 3D printing is a revolutionary technology that combines cost-effectiveness with an optimal trade off between standardization and customization. Here we show a device that performs operant conditioning in mice using largely 3D printed parts. This tool can be employed to test learning and memory in models of disease. We expect that the open design of the chamber will be useful for scientific teaching and research as well as for further improvements from the open hardware community

    Visual stimulation activates ERK in synaptic and somatic compartments of rat cortical neurons with parallel kinetics.

    Get PDF
    BACKGROUND: Extracellular signal-regulated kinase (ERK) signalling pathway plays a crucial role in regulating diverse neuronal processes, such as cell proliferation and differentiation, and long-term synaptic plasticity. However, a detailed understanding of the action of ERK in neurons is made difficult by the lack of knowledge about its subcellular localization in response to physiological stimuli. To address this issue, we have studied the effect of visual stimulation in vivo of dark-reared rats on the spatial-temporal dynamics of ERK activation in pyramidal neurons of the visual cortex. METHODOLOGY/PRINCIPAL FINDINGS: Using immunogold electron microscopy, we show that phosphorylated ERK (pERK) is present in dendritic spines, both at synaptic and non-synaptic plasma membrane domains. Moreover, pERK is also detected in presynaptic axonal boutons forming connections with dendritic spines. Visual stimulation after dark rearing during the critical period causes a rapid increase in the number of pERK-labelled synapses in cortical layers I-II/III. This visually-induced activation of ERK at synaptic sites occurs in pre- and post-synaptic compartments and its temporal profile is identical to that of ERK activation in neuronal cell bodies. CONCLUSIONS/SIGNIFICANCE: Visual stimulation in vivo increases pERK expression at pre- and post-synaptic sites of axo-spinous junctions, suggesting that ERK plays an important role in the local modulation of synaptic function. The data presented here support a model in which pERK can have early and late actions both centrally in the cell nucleus and peripherally at synaptic contacts
    • …
    corecore