5,641 research outputs found

    Photoemission Spectra from Reduced Density Matrices: the Band Gap in Strongly Correlated Systems

    Full text link
    We present a method for the calculation of photoemission spectra in terms of reduced density matrices. We start from the spectral representation of the one-body Green's function G, whose imaginary part is related to photoemission spectra, and we introduce a frequency-dependent effective energy that accounts for all the poles of G. Simple approximations to this effective energy give accurate spectra in model systems in the weak as well as strong correlation regime. In real systems reduced density matrices can be obtained from reduced density-matrix functional theory. Here we use this approach to calculate the photoemission spectrum of bulk NiO: our method yields a qualitatively correct picture both in the antiferromagnetic and paramagnetic phases, contrary to mean-field methods, in which the paramagnet is a metal

    Modelling the exposure to Cronobacter sakazakii by consumption of a cocoa-milk-based beverage processed by pulsed electric fields

    Get PDF
    peer-reviewedM.C. Pina-Pérez is grateful to CSIC for providing a DOCTOR contract linked to the INNPACTO project IPT-2011-1724-060000. This study was carried out with funds from BISOSTAD project PSE-060000-2009-003, Generalitat Valenciana I+D+I emergent research groups GV/2010/064 and CYCIT project AGL2010-22206-C02-01.Infants’ exposure (Nf ) to Cronobacter sakazakii via the consumption of infant-rich-inpolyphenols cocoa-milk-based beverages (CCX-M) treated with high-intensity pulsed electric fields (PEF) was evaluated. Monte Carlo simulation enabled the prediction of the variability in C. sakazakii load in beverages at the time of consumption to be estimated. Different scenarios (initial contamination levels; PEF treatment conditions; and time-temperature combinations of CCX-M beverages storage after treatment) were simulated. Cocoa addition and PEF treatment resulted in the most influential input factors to control bacterial final load. Cronobacter spp. exposure risk was reduced by a maximum of 100 times at 95% of iterations due to addition of cocoa at 5 g/100 mL, corresponding to scenario 3 (PEF: 15 kV/cm–3,000 μs; storage 120 h at 8 °C). Moreover, the probability of illness for a healthy population was reduced from 2.15 × 10-8, in the baseline scenario, to 4.78 × 10-10 due to cocoa addition and application of 15 kV/cm–3,000 μs PEF treatment.BISOSTAD projec

    Polyhexamethylene Biguanide and Nadifloxacin Self-Assembled Nanoparticles: Antimicrobial Effects against Intracellular Methicillin-Resistant Staphylococcus aureus

    Get PDF
    The treatment of skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge, partly due to localization of the bacteria inside the host’s cells, where antimicrobial penetration and efficacy is limited. We formulated the cationic polymer polyhexamethylene biguanide (PHMB) with the topical antibiotic nadifloxacin and tested the activities against intracellular MRSA in infected keratinocytes. The PHMB/nadifloxacin nanoparticles displayed a size of 291.3 ± 89.6 nm, polydispersity index of 0.35 ± 0.04, zeta potential of +20.2 ± 4.8 mV, and drug encapsulation efficiency of 58.25 ± 3.4%. The nanoparticles killed intracellular MRSA, and relative to free polymer or drugs used separately or together, the nanoparticles displayed reduced toxicity and improved host cell recovery. Together, these findings show that PHMB/nadifloxacin nanoparticles are effective against intracellular bacteria and could be further developed for the treatment of skin and soft tissue infections

    On the use of semi-distributed and fully-distributed urban stormwater models

    Get PDF
    Urban stormwater models comprise four main components: rainfall, rainfall-runoff, overland flow and sewer flow modules. They can be considered semi-distributed (SD) or fully distributed (FD) according to the rainfall-runoff module definition. SD models are based on sub-catchments units through which rainfall is applied to the model and at which runoff volumes are estimated. In FD models, the runoff volumes are estimated and applied directly on every element of a twodimensional (2D) model of the surface. This poster presents a comparison of SD and FD models based on two case studies: Zona Central catchment at Coimbra, Portugal, and Cranbrook catchment at London, UK. SD and FD modelling results are compared against water depth and flow records in sewers, and photographic records of a flood event. In general, FD models are theoretically more realistic and physically-based, but the results of this study suggest that the implementation of these models requires higher resolution (more detailed) elevation, land use and sewer network data than is normally used in the implementation of SD models. Failing to use higher resolution data for the implementation of FD models could result in poor-performing models. In cases when high resolution data are not available, the use of SD models could be a better choice

    Classe de Ciências

    Get PDF
    info:eu-repo/semantics/publishedVersio
    • …
    corecore