81 research outputs found
Heavy elements in Globular Clusters: the role of AGB stars
Recent observations of heavy elements in Globular Clusters reveal intriguing
deviations from the standard paradigm of the early galactic nucleosynthesis. If
the r-process contamination is a common feature of halo stars, s-process
enhancements are found in a few Globular Clusters only. We show that the
combined pollution of AGB stars with mass ranging between 3 to 6 M may
account for most of the features of the s-process overabundance in M4 and M22.
In these stars, the s process is a mixture of two different neutron-capture
nucleosynthesis episodes. The first is due to the 13C(a,n)16O reaction and
takes place during the interpulse periods. The second is due to the
22Ne(a,n)25Mg reaction and takes place in the convective zones generated by
thermal pulses. The production of the heaviest s elements (from Ba to Pb)
requires the first neutron burst, while the second produces large
overabundances of light s (Sr, Y, Zr). The first mainly operates in the
less-massive AGB stars, while the second dominates in the more-massive. From
the heavy-s/light-s ratio, we derive that the pollution phase should last for
Myr, a period short enough compared to the formation timescale of
the Globular Cluster system, but long enough to explain why the s-process
pollution is observed in a few cases only. With few exceptions, our theoretical
prediction provides a reasonable reproduction of the observed s-process
abundances, from Sr to Hf. However, Ce is probably underproduced by our models,
while Rb and Pb are overproduced. Possible solutions are discussed.Comment: Accepted by the Ap
On the need of the Light Elements Primary Process (LEPP)
Extant chemical evolution models underestimate the Galactic production of Sr,
Y and Zr as well as the Solar System abundances of s-only isotopes with
90<A<130. To solve this problem, an additional (unknown) process has been
invoked, the so-called LEPP (Light Element Primary Process). In this paper we
investigate possible alternative solutions. Basing on Full Network Stellar
evolutionary calculations, we investigate the effects on the Solar System
s-only distribution induced by the inclusion of some commonly ignored physical
processes (e.g. rotation) or by the variation of the treatment of convective
overshoot, mass-loss and the efficiency of nuclear processes. Our main findings
are: 1) at the epoch of the formation of the Solar System, our reference model
produces super-solar abundances for the whole s-only distribution, even in the
range 90<A<130; 2) within errors, the s-only distribution relative to 150Sm is
flat; 3) the s-process contribution of the less massive AGB stars (M<1.5 M_SUN)
as well as of the more massive ones (M>4.0 M_SUN) are negligible; 4) the
inclusion of rotation implies a downward shift of the whole distribution with
an higher efficiency for the heavy s-only isotopes, leading to a flatter s-only
distribution; 5) different prescriptions on convection or mass-loss produce
nearly rigid shifts of the whole distribution. In summary, a variation of the
standard paradigm of AGB nucleosynthesis would allow to reconcile models
predictions with Solar System s-only abundances. Nonetheless, the LEPP cannot
be definitely ruled out, because of the uncertainties still affecting stellar
and Galactic chemical evolution models.Comment: Accepted for publication on Ap
Observational Properties of SNe Ia Progenitors Close to the Explosion
We determine the expected signal in various observational bands of Supernovae
Ia progenitors just before the explosion by assuming the rotating Double
Degenerate scenario. Our results are valid also for all the evolutionary
scenarios invoking rotation as the driving mechanism of the accretion process
as well as the evolution up to the explosion. We find that the observational
properties depend mainly on the mass of the exploding object, even if the
angular momentum evolution after the end of the mass accretion phase and before
the onset of C-burning plays a non-negligible role. Just before the explosion
the magnitude M_V ranges between 9 and 11 mag, while the colour (F225W-F555W)
is about -1.64 mag. The photometric properties remain constant for a few
decades before the explosion. During the last few months the luminosity
decreases very rapidly. The corresponding decline in the optical bands varies
from few hundredths up to one magnitude, the exact value depending on both the
WD total mass and the braking efficiency at the end of the mass transfer. This
feature is related to the exponentially increasing energy production which
drives the formation of a convective core rapidly extending over a large part
of the exploding object. Also a drop in the angular velocity occurs. We find
that observations in the soft X band (0.5 -2 keV) may be used to check if the
SNe Ia progenitors evolution up to explosion is driven by rotation and, hence,
to discriminate among different progenitor scenarios.Comment: 8 pages, 6 figures, 2 tables. Accepted for the publication on MNRA
Nucleation of small silicon carbide dust clusters in AGB stars
Silicon carbide (SiC) grains are a major dust component in carbon-rich AGB
stars. The formation pathways of these grains are, however, not fully
understood.\ We calculate ground states and energetically low-lying structures
of (SiC), clusters by means of simulated annealing (SA) and Monte
Carlo simulations of seed structures and subsequent quantum-mechanical
calculations on the density functional level of theory. We derive the infrared
(IR) spectra of these clusters and compare the IR signatures to observational
and laboratory data.\ According to energetic considerations, we evaluate the
viability of SiC cluster growth at several densities and temperatures,
characterising various locations and evolutionary states in circumstellar
envelopes.\ We discover new, energetically low-lying structures for
SiC, SiC, SiC and SiC, and
new ground states for SiC and SiC. The clusters
with carbon-segregated substructures tend to be more stable by 4-9 eV than
their bulk-like isomers with alternating Si-C bonds. However, we find ground
states with cage ("bucky"-like) geometries for SiC and
SiC and low-lying, stable cage structures for n 12. The
latter findings indicate thus a regime of clusters sizes that differs from
small clusters as well as from large-scale crystals. Thus, and owing to their
stability and geometry, the latter clusters may mark a transition from a
quantum-confined cluster regime to crystalline, solid bulk-material.
The calculated vibrational IR spectra of the ground-state SiC clusters shows
significant emission. They include the 10-13 m wavelength range and the
11.3 m feature inferred from laboratory measurements and observations,
respectively, though the overall intensities are rather low.Comment: 16 pages, 25 figures, 3 tables, accepted for publication in Ap
Extremely Metal-Poor Asymptotic Giant Branch Stars
Little is known about the first stars, but hints on this stellar population can be derived from the peculiar chemical composition of the most metal-poor objects in the Milky Way and in resolved stellar populations of nearby galaxies. In this paper, we review the evolution and nucleosynthesis of metal-poor and extremely metal-poor (EMP) stars with low and intermediate masses. In particular, new models of 6 M⊙ with three different levels of metallicity, namely Z=10−4, 10−6 and 10−10, are presented. In addition, we illustrate the results obtained for a 2 M⊙, Z=10−5 model. All these models have been computed by means of the latest version of the FuNS code. We adopted a fully coupled scheme of solutions for the complete set of differential equations describing the evolution of the physical structure and the chemical abundances, as modified by nuclear processes and convective mixing. The scarcity of CNO in the material from which these stars formed significantly affects their evolution, their final fate and their contribution to the chemical pollution of the ISM in primordial galaxies. We show the potential of these models for the interpretation of the composition of EMP stars, with particular emphasis on CEMP stars
Pre-explosive Accretion and Simmering Phases of SNe Ia
This publication is part of the project I + D + I PGC2018-095317-B-C21 funded by MICIN/AEI/10.13039/501100011033 and FEDER "A way of doing Europe" (E.B. and I.D.); L.P. and O.S. acknowledge financial support from the INAF-mainstream project "Type Ia Supernovae and their Parent Galaxies: Expected Results from LSST." O.S. and L.P. acknowledge their participation to the V:ANS project (Vanvitelli program on standard candles in astrophysics: Atomic and Nuclear physics in SNIa) supported by the Vanvitelli University.In accreting white dwarfs (WDs) approaching the Chandrasekhar limit, hydrostatic carbon burning precedes the dynamical breakout. During this simmering phase, e-captures are energetically favored in the central region of the star, while beta-decay are favored more outside, and the two zones are connected by a growing convective instability. We analyze the interplay between weak interactions and convection, the so-called convective URCA process, during the simmering phase of Type Ia supernovae (SNe Ia) progenitors and its effects on the physical and chemical properties at the explosion epoch. At variance with previous studies, we find that the convective core powered by the carbon burning remains confined within the (21)(Ne,F) URCA shell. As a result, a much larger amount of carbon has to be consumed before the explosion that eventually occurs at larger density than previously estimated. In addition, we find that the extension of the convective core and its average neutronization depend on the the WD progenitor's initial metallicity. For the average neutronization in the convective core at the explosion epoch, we obtain (eta) over bar (exp) = (1.094 +/- 0.143) x 10(-3) + (9.168 +/- 0.677) x 10(-2) x Z. Outside the convective core, the neutronization is instead determined by the initial amount of C + N + O in the progenitor star. Since S, Ca, Cr, and Mn, the elements usually exploited to evaluate the pre-explosive neutronization, are mainly produced outside the heavily neutronized core, the problem of too high metallicity estimated for the progenitors of the historical Tycho and Kepler SNe Ia remains unsolved.FEDER "A way of doing Europe"INAF-mainstream project "Type Ia Supernovae and their Parent Galaxies: Expected Results from LSST"Vanvitelli University
PGC2018-095317-B-C21MICIN/AEI/10.13039/50110001103
AGB Stars and Their Circumstellar Envelopes: An Operative Approach to Computing Their Atmospheres
The study of AGB stars necessarily covers a wide range of topics, from the primary astronomical observations to their interpretation in terms of fundamental physics. All that requires proper ad hoc methodologies, among which numerical modeling of the outer layers of AGB stars plays a paramount role. In this paper, we present an iterative sequential procedure, operative and physically sound, tailored to compute extended stellar atmospheres. It will constitute the backbone of the in fieri TEIDE package to be implemented into our VULCAN code. Such an improvement will allow us to compute more realistic models of the extended atmospheres of AGB stars taking into account important physical aspects that are neglected in the actual version of VULCAN
On the very long term evolutionary behavior of hydrogen-accreting Low-Mass CO white dwarfs
Hydrogen-rich matter has been added to a CO white dwarf of initial mass 0.516
\msun at the rates and \msun \yrm1, and results are
compared with those for a white dwarf of the same initial mass which accretes
pure helium at the same rates. For the chosen accretion rates, hydrogen burns
in a series of recurrent mild flashes and the ashes of hydrogen burning build
up a helium layer at the base of which a He flash eventually occurs. In
previous studies involving accretion at higher rates and including initially
more massive WDs, the diffusion of energy inward from the H shell-flashing
region contributes to the increase in the temperature at the base of the helium
layer, and the mass of the helium layer when the He flash begins is
significantly smaller than in a comparison model accreting pure helium; the He
shell flash is not strong enough to develop into a supernova explosion. In
contrast, for the conditions adopted here, the temperature at the base of the
He layer becomes gradually independent of the deposition of energy by H shell
flashes, and the mass of the He layer when the He flash occurs is a function
only of the accretion rate, independent of the hydrogen content of the accreted
matter. When the He flash takes place, due to the high degeneracy at the base
of the He layer, temperatures in the flashing zone will rise without a
corresponding increase in pressure, nuclear burning will continue until nuclear
statistical equilibrium is achieved; the model will become a supernova, but not
of the classical type Ia variety.Comment: 14 pages and 3 Postscript figures, Accepted for publication on ApJ
Letter
Type Ia supernovae from chemically segregated white dwarfs
Type Ia supernovae are the outcome of the explosion of a carbon–oxygen white dwarf in a close binary system. They are thought to be
the main contributors to the galactic nucleosynthesis of iron-peak elements, with important contributions to the yields of intermediatemass
elements. Recent analyses of the phase diagram of carbon and oxygen containing impurities such as 22Ne and 56Fe in conditions
relevant to white dwarf interiors suggest that both isotopes can partially separate when the temperature of the star is low enough to start
solidifying. The purpose of the present paper is to examine the impact of this separation on the yields of the different chemical species
synthesized during explosions. We used a one-dimensional supernova code to evaluate the impact of the sedimentation assuming
different degrees of chemical separation. We find that the main properties of the ejecta, the kinetic energy, and the ejected mass of
56Ni only vary slightly when the separation is taken into account. However, the yields of important isotopes that are used as diagnostic
tools, such as manganese, can be strongly modified. Furthermore, the chemical separation studied here is able to change several
indicators related to the metallicity of the progenitor (such as the mass ratio of calcium to sulphur in the ejecta or the UV flux of the
supernova) and to its mass, whether it is a Chandrasekhar-mass white dwarf or a substantially lighter one (such as the imprint of stable
nickel on late-time infrared spectra or that related to the presence of radioactive nickel at the center of the ejecta).Spanish grant PID2021-123110NB-100 funded by MCIN/AEI/10.13039/501100011033/FEDER/UEMICIN/AEI grant
PID2019-108709GBI00Program Unidad de Excelencia Maria de Maetzu
CEX2020-001058-MItalian
MUR project2022RJLWHN: Understanding R-process & Kilonovae Aspects
(URKA
The Influence of N14(e-,nu)C14(alpha,gamma)O18 reaction on the He-Ignition in Degenerate Physical Conditions
The importance of NCO chain on the onset of the He-flash in degenerate
physical conditions has been reevaluated. We find that low-mass, metal-rich (Z
0.001) structures climbing the Red Giant Branch do never attain the
physical conditions suitable for the onset of this chain, while at lower
metallicities the energy contribution provided by NCO reaction is too low to
affect the onset of the central He-flash. At the same time, our evolutionary
models suggest that for a Carbon-Oxygen White Dwarf of mass M_{WD}=0.6 M_sun
accreting He-rich matter, directly or as a by-product of an overlying H-burning
shell, at rates suitable for a dynamical He-flash, the NCO energy contribution
is not able to keep hot enough the He-shell and in turn to avoid the occurrence
of a strong electron degeneracy and the ensuing final explosion.Comment: 15 pages, 3 tables, 10 figure, to appear in Ap
- …