592 research outputs found

    Generic mechanism for generating a liquid-liquid phase transition

    Full text link
    Recent experimental results indicate that phosphorus, a single-component system, can have two liquid phases: a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular liquid metals), and such potentials are often used to decribe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig

    Emergent excitations in a geometrically frustrated magnet

    Full text link
    Frustrated systems are ubiquitous and interesting because their behavior is difficult to predict. Magnetism offers extreme examples in the form of spin lattices where all interactions between spins cannot be simultaneously satisfied. Such geometrical frustration leads to macroscopic degeneracies, and offers the possibility of qualitatively new states of matter whose nature has yet to be fully understood. Here we have discovered how novel composite spin degrees of freedom can emerge from frustrated interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops whose directors, defined as the unique direction along which the spins are aligned parallel or antiparallel, govern all low temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering. While the data bears no resemblance to the atomic form factor for chromium, they are perfectly consistent with the form factor for hexagonal spin loop directors. The hexagon directors are to a first approximation decoupled from each other and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques

    Liquid Polymorphism and Double Criticality in a Lattice Gas Model

    Full text link
    We analyze the possible phase diagrams of a simple model for an associating liquid proposed previously. Our two-dimensional lattice model combines oreintati onal ice-like interactions and \"{}Van der Waals\"{} interactions which may be repulsive, and in this case represent a penalty for distortion of hydrogen bonds in the presence of extra molecules. These interactions can be interpreted in terms of two competing distances, but not necessarily soft-core. We present mean -field calculations and an exhaustive simulation study for different parameters which represent relative strength of the bonding interaction to the energy penalty for its distortion. As this ratio decreases, a smooth disappearance of the doubl e criticality occurs. Possible connections to liquid-liquid transitions of molecul ar liquids are suggested

    Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids

    Full text link
    The viscosity of glass-forming liquids increases by many orders of magnitude if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies suggest that this widespread phenomenon is accompanied by spatially heterogeneous dynamics [3,4], and a growing dynamic correlation length quantifying the extent of correlated particle motion [5-7]. Here we use a novel numerical method to detect and quantify spatial correlations which reveal a surprising non-monotonic temperature evolution of spatial dynamical correlations, accompanied by a second length scale that grows monotonically and has a very different nature. Our results directly unveil a dramatic qualitative change in atomic motions near the mode-coupling crossover temperature [8] which involves no fitting or indirect theoretical interpretation. Our results impose severe new constraints on the theoretical description of the glass transition, and open several research perspectives, in particular for experiments, to confirm and quantify our observations in real materials.Comment: 7 page

    Irreversible reorganization in a supercooled liquid originates from localised soft modes

    Full text link
    The transition of a fluid to a rigid glass upon cooling is a common route of transformation from liquid to solid that embodies the most poorly understood features of both phases1,2,3. From the liquid perspective, the puzzle is to understand stress relaxation in the disordered state. From the perspective of solids, the challenge is to extend our description of structure and its mechanical consequences to materials without long range order. Using computer simulations, we show that the localized low frequency normal modes of a configuration in a supercooled liquid are causally correlated to the irreversible structural reorganization of the particles within that configuration. We also demonstrate that the spatial distribution of these soft local modes can persist in spite of significant particle reorganization. The consequence of these two results is that it is now feasible to construct a theory of relaxation length scales in glass-forming liquids without recourse to dynamics and to explicitly relate molecular properties to their collective relaxation.Comment: Published online: 20 July 2008 | doi:10.1038/nphys1025 Available from http://www.nature.com/nphys/journal/v4/n9/abs/nphys1025.htm

    Liquid-liquid critical point in supercooled silicon

    Full text link
    A novel liquid-liquid phase transition has been proposed and investigated in a wide variety of pure substances recently, including water, silica and silicon. From computer simulations using the Stillinger-Weber classical empirical potential, Sastry and Angell [1] demonstrated a first order liquid-liquid transition in supercooled silicon, subsequently supported by experimental and simulation studies. Here, we report evidence for a liquid-liquid critical end point at negative pressures, from computer simulations using the SW potential. Compressibilities exhibit a growing maximum upon lowering temperature below 1500 K and isotherms exhibit density discontinuities below 1120 K, at negative pressure. Below 1120 K, isotherms obtained from constant volume-temperature simulations exhibit non-monotonic, van der Waals-like behavior signaling a first order transition. We identify Tc ~ 1120 +/- 12 K, Pc -0.60 +/- 0.15 GPa as the critical temperature and pressure for the liquid-liquid critical point. The structure of the liquid changes dramatically upon decreasing the temperature and pressure. Diffusivities vary over 4 orders of magnitude, and exhibit anomalous pressure dependence near the critical point. A strong relationship between local geometry quantified by the coordination number, and diffusivity, is seen, suggesting that atomic mobility in both low and high density liquids can usefully be analyzed in terms of defects in the tetrahedral network structure. We have constructed the phase diagram of supercooled silicon. We identify the lines of compressibility, density extrema (maxima and minima) and the spinodal which reveal the interconnection between thermodynamic anomalies and the phase behaviour of the system as suggested in previous works [2-9]Comment: (to be published in revised form); small corrections to previous version; Nature Physics 201

    A thermodynamic unification of jamming

    Full text link
    Fragile materials ranging from sand to fire-retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here we quantify jamming via a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the 'fluffiness' of a granular mixture. The thermodynamic model, casted in terms of pressure, temperature and free-volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy avoids the Kauzmann paradox entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure

    Configurational Entropy and Diffusivity of Supercooled Water

    Full text link
    We calculate the configurational entropy S_conf for the SPC/E model of water for state points covering a large region of the (T,rho) plane. We find that (i) the (T,rho) dependence of S_conf correlates with the diffusion constant and (ii) that the line of maxima in S_conf tracks the line of density maxima. Our simulation data indicate that the dynamics are strongly influenced by S_conf even above the mode-coupling temperature T_MCT(rho).Comment: Significant update of reference
    • …
    corecore