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Abstract

This work reports a procedure for predicting the interfacial tension of pure fluids. It is based

on scaling arguments applied to the influence parameter of the van der Waals theory of inhomoge-

neous fluids. The molecular model stems from the application of the Square Gradient Theory to

the SAFT-VR Mie equation of state. The theory is validated against computer simulation results

for homonuclear pearl-necklace linear chains made up to six Mie (λ−6) beads with repulsive expo-

nents spanning from λ = 8 to 44 by combining the theory with a corresponding states correlation

to determine the intermolecular potential parameters. We provide a predictive tool to determine

interfacial tensions for a wide range of molecules including hydrocarbons, fluorocarbons, polar

molecules, among others. The proposed methodology is tested against comparable existing corre-

lations in the literature, proving to be vastly superior, exhibiting an average absolute deviation of

2.2 %.
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INTRODUCTION

Interfacial tension (IFT) is arguably the key thermophysical property that governs the be-

haviour of inhomogeneous fluids. Its relevance is rooted in the fact that the magnitude of the

IFT and its relationship to other state variables (i.e., temperature, pressure, composition)

controls several interfacial phenomena such as wetting transitions, interfaces at the vicinity

of critical states, nucleation of new phases, etc. The physical understanding and modelling

of IFT also provides a route to link tensions with the inhomogeneous behaviour of fluids at

molecular level, such as concentration of species along the interfacial zone, interfacial width,

etc.1,2 An additional distinctive characteristic of the IFT is that its value can be obtained

from experimental measurements,3 molecular simulations,4 and theoretical approaches.1,3,5,6

Specifically, experimental determinations can be carried out by using tensiometers. In these

devices, the IFT is indirectly measured from the force needed to detach an object from a free

surfaces (e.g., Wilhelmy plate and du Noüy ring tensiometers) or by combining Laplace’s

equation with some characteristic dimensions of the system, such as the liquid height in a

capillary tube (e.g., capillary rise tensiometer) or the silhouette of a pendant or ellipsoid

drop (e.g., pendant drop and spinning drop tensiometers, respectively). For further discus-

sions related to tensiometers and the experimental techniques the reader is redirected to

Refs.3and7. From a molecular simulation perspective, inhomogeneous fluids can be simulated

in the canonical ensemble by using both Molecular Dynamics and Monte Carlo schemes.4 In

both schemes, the IFT can be computed from the mechanical and/or the thermodynamic

route. In the mechanical route or IK method8, the IFT is computed from the integration of

the difference between the normal and tangential pressure (Hulshof’s integral9), which are

described by the diagonal components of the Irving and Kirkwood tensor.10 In the thermody-

namic route or Test Area method11, the IFT is computed from the change in the Helmholtz

energy in the limit of an infinitesimal perturbation in the interfacial area. Empirically, IFT

can be related to the difference between the liquid and vapor densities through a phenomeno-

logical relationship know as the Parachor.12,13 Such an approach is useful from a practical

standpoint, buy its lack of rigour precludes any meaningful extrapolation. From a more

fundamental viewpoint, the calculation of the IFT can be based on corresponding states

principles14,15 and statistical mechanics perturbation methods6, where the Square Gradient

Theory (SGT)16,17 stands out as one of the most widely used. From a formal perspective,
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classical density functional theory (DFT) also provides a route to determine density profiles

and IFT in simple scenarios, but it us yet to be fully developed for non-spherical fluids.18–21

In SGT, the Helmholtz energy density of the interfacial fluid is described by the sum of

two contributions. The first part takes into account the Helmholtz energy density for the

homogeneous fluid at a local-density, while the second part represents the inhomogeneous

contribution of Helmholtz energy by a product of square local-density gradients and some

characteristic parameters. These latter parameters have been historically called influence

parameters since their values govern the stability and characteristic length scales of the in-

terfaces. The popularity of SGT can be attributed to its relative simplicity and to the unique

proposition of using the same equation of state to model simultaneously the homogeneous

(e.g., phase equilibria) and inhomogeneous (interfacial properties) behaviour of fluids in a

good agreement with experimental data. Additionally, SGT provides other interfacial prop-

erties such as density or concentration profiles along the interfacial zone, interface thickness,

excess adsorption, surface enthalpy and surface entropy, etc. The physical reliability of SGT

has been verified by several authors for pure fluids and multicomponent fluid mixtures in

different phase equilibria scenarios, such as vapour-liquid, liquid-liquid, vapour-liquid-liquid

and four phases. All these calculations have been carried out by using a myriad of equations

of state (EoS) to model the homogeneous part of the interfacial Helmholtz energy. A rep-

resentative but not exhaustive list of the most common used EoS are cubic van der Waals

-type EoS.22–37, cubic plus association (CPA) EoS38–40, non-cubic EoS41, technical EoS42 and

molecular based EoS43–71.

Despite the success of SGT for describing interfacial properties of pure fluids and fluid

mixtures, this theory depends crucially on the independent determination of the influence

parameter. Theoretically, the influence parameter can be computed from its molecular def-

inition (i.e., integration of the direct correlation function of the homogeneous fluid), but

the available theories for the two-body direct correlation function between two species in

homogeneous fluids are not completely developed, as the results still exhibit poor perfor-

mance when compared to experimental or molecular dynamics results.72–75 To circumvent

this problem, Carey22,76 proposed to invest the problem and back-calculate the influence

parameter using experimental data of IFT and SGT to later correlate the results to the

EoS parameters. This semi empirical approach has been broadly used for pure fluids and

nowadays quite refined correlations are available. For instance, Zuo and Stenby27, Miqueu
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et al.29 and Lin et al.34, have used the Peng - Robinson EoS77 and its volume translated

version in SGT to correlate the influence parameter as a function of temperature and the

acentric factor. These correlations have shown a remarkably good agreement between SGT

estimations and experimental data. The same procedure has been also used starting from

molecular based EoS, such as SAFT EoS and its variants, where both experimental data

and Molecular Dynamics simulations have been used to correlated the influence parameter

(see for instance Refs.48,53,71,and78). Mixtures add another dimension of complexity, whereas

the corresponding binary (cross) influence parameter must then be determined, usually in

an empirical fashion through simple geometric mixing rules or by fitting to binary experi-

mental data. This approach seems to work for most simple cases and is trivially extendable

to multicomponent mixtures.

In summary, while SGT is a powerful theory for describing the interfacial tension of pure

fluids and fluid mixtures its main limitation for it to be used as a predictive theory is the

lack of generality and limited transferability of the influence parameters. The main goal of

this work is to develop a flexible, transferable and universal set of relations for the influ-

ence parameter for pure fluids. A rather long-standing affort has been made to produce a

molecular-based equation of state that can faithfully represent in a quantitative fashion the

macroscopic thermodynamic properties of fluids with these potentials. The latest version of

these theories, the SAFT-Mie equations79,80, which will be discussed later, has been sucess-

fully employed both as a tool for fitting, correlating and subsequent prediction of fluid phase

equilibria in a wide range of scenarios (e.g. vapor-liquid equilibria, water-octanol partition

coefficients, liquid-liquid equilibria, etc.) for a wide range of industrially relevant fluids

including, but not limited to polar fluids, refrigerants, crude oils, polymers, etc. However,

possibly, the most interesting feature of these equations is the direct and quantitative link to

the underlying potential, such that information gathered experiments can be incorporated

into intermolecular potentials of interest here, is to garner experience from the molecular

simulation of vapor-liquid interfaces to directly feed into this framework, in order to build a

robust and transferable model capable of predicting the properties of an interfacial system

from a minimal amount of commonly available experimental information, such as critical

constants (see Refs.65–67,81–87 for a complete discussion).

This paper is organized as follows: We summarize the main working expressions of the SGT

and the SAFT-VR Mie EoS in Section II. In Section III we briefly consider the Molecular
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simulation methodology used in this work. The main results obtained from the correspond-

ing states correlations for interfacial tension and applications for selected fluids are discussed

in Section IV. Finally, the main conclusions are summarized in Section V.

THEORY

The Square Gradient Theory for fluid interfaces

The Square Gradient Theory (SGT) for fluid interfaces was proposed by van der Waals in

the early 1890s, with the original paper published in 189416 after he confirmed the reliability

of this theory by describing the observed experimental data of pure ether near to the critical

state measured by de Vries in 1893.88 In the original work, van der Waals proposed for the

first time a smooth density variation through the interface region rather than a infinitely

sharp variation proposed by Laplace. For a complete historical description of the origin

and motivations involved in the development of SGT and also its similarities to the work of

Rayleigh and Fuchs on capillarity, the reader is redirected to the books by Kipnis et al.89

Levelt Sengers90 and Rowlinson91 and Rowlinson and Widom1. The SGT was rediscovered

and extended for mixtures by Cahn and Hilliard sixty years later.92 In the middle of 70s, the

SGT was remasterized simultaneously and independently by Bongiorno and Davis73,74 and

Yang et al.93 by using statistical mechanics arguments. However, its popularity rises at the

end of 70s, when Carey22,23,76 gave a boost to SGT by applying it to the Peng-Robinson EoS77

and reported interfacial properties for both pure fluids and fluid mixtures. Since Carey’s

seminal work, multiple authors have used SGT to describe interfacial properties for pure flu-

ids and multicomponent mixtures in biphasic, triphasic and multi-phasic phase equilibrium.

In fact, according to our records there are more than 150 scientific papers related to SGT

and this theory has been used as base for several PhD thesis (see for example Refs.76,94–98).

As SGT has been broadly discussed in the literature, this section only condenses the main

working expressions for modeling the interfacial behavior for the case of pure fluids in vapor

- liquid equilibrium. The reader is directed Refs.99and100 and the corresponding PhD thesis

for a complete deduction of SGT.

In the SGT, the interfacial density of a pure fluid, ρ (z), varies continuously from the bulk

density of a vapor (ρ (z → −∞) = ρV ) to the bulk density of a liquid (ρ (z → +∞) = ρL). In
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order to describe this continuous evolution, van der Waals proposed to express the Helmholtz

energy (A) of an interfacial or inhomogeneous fluid as a second order Taylor expansion about

the homogenous Helmholtz energy density, a0, at the local density ρ. For the case of pure

fluids characterized by flat interfaces between adjacent phases, the Taylor expansion may be

performed along the interface width by considering a normal z-coordinate (perpendicular to

the plane of the interface) as follows:

A = S

ˆ +∞

−∞

[
a0 (ρ (z)) +

1

2
c

(
dρ (z)

dz

)2
]
dz (1)

where S corresponds to the interfacial area and c denotes the influence parameter. In this

expression, the first term within the integral refers to the homogeneous fluid contribution

and the second term corresponds to the inhomogeneous part expressed as gradient term

multiplied by the influence parameter (c). The minimization of Equation (1) for a closed

system leads to the following second order differential equation of ρ (z):

d

dz

[
c

2

(
dρ

dz

)2
]
=

dΩ (ρ)

dz
(2)

in Equation (2), Ω represents the grand thermodynamic potential, which is defined as

Ω (ρ) = a0 (ρ) − ρ (∂a0/∂ρ)
0, where the superscript denotes that the term is evaluated

at phase equilibrium conditions, and a0 is the molar Helmholtz energy.

Considering the boundary conditions for a planar interface in vapour-liquid equilibrium

(i.e., ρ (z → +∞) = ρL, ρ (z → −∞) = ρV and dρ/dz (z → ±∞) = 0), the integration of

Equation (2) yields to the interfacial density profile:

z − z0 =

ˆ ρ(z)

ρ0

√
c

2 (Ω −Ω0)
dρ (3)

where z0 is an arbitrary spatial coordinate for the bulk density ρ0. Ω0 denotes the grand

thermodynamic potential at equilibrium where Ω0 = Ω0
(
ρL

)
= Ω0

(
ρV

)
= −P 0 and P 0 is

the bulk equilibrium pressure (or vapor pressure).

Within the SGT (cf. Equation (1)), the interfacial tension, γ, between vapor - liquid

phases can be computed from the following expression:

γ =

(
∂A

∂S

)

TV N

=

ˆ +∞

−∞
c

(
dρ

dz

)2

dz (4)
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Alternatively, the interfacial tension of pure fluids can be also calculated by using the

following integral expression, which is obtained by combining Equation (3) and Equation (4):

γ =

ˆ ρL

ρV

√
2c (Ω + P 0)dρ (5)

Inspection of Equations (3) to (5) reveals that the calculation of ρ (z) and γ depend on

the EoS model and crucially, on the undetermined parameter c.

The Statistical Associating Fluid Theory (SAFT) EoS

As is obvious from above, one of the key inputs of SGT is the EoS model. The EoS model

not only provides a model for a0 but also a framework to calculate the phase equilibrium

and the corresponding bulk phase densities. Following Carey’s seminal work describing the

procedure to link modern EoS to SGT, several EoSs have subsequently been used in SGT,

being the Peng - Robinson EoS77 and SAFT EoS the most popular choices. In this context,

the main advantage of cubic EoSs is their mathematic simplicity and the parametrization

of their parameters in terms of critical coordinates and acentric factor. However, cubic

EoSs display well documented limitations for simultaneous fitting both liquid densities,

vapor pressures and critical points. This limitation can be circumvented by using more

sophisticated molecular EoS models such as the SAFT EoS (see McCabe and Galindo101 for

a recent review on this EoS).

In this work, we select the most update version of SAFT, the SAFT-VR-Mie EoS,79

which represents a significative advance in SAFT models.102 The main improvement of this

version versus older encarnations is the expression up to third order in the residual Helmholtz

energy of the monomer term and the flexibility brought about by being based on the Mie

potential103, uMie, which can be represented by

uMie (rij) = Cε

[(
σ

rij

)λr

−
(

σ

rij

)λa
]

(6)

In Equation (6), λr and λa are the repulsion and attraction parameters of the intermolec-

ular potential, respectively, rij is the center-to-center distance of the interacting segments,

ε is the energy scale corresponding to the potential well depth, σ is the length scale, corre-

sponding loosely with an effective segment diameter, and C is a constant defined as:
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C =
λr

λr − λa

(
λr

λa

) λa
λr−λa

(7)

The Mie potential reverts to the well-known Lennard-Jones model104 if the repulsive and

attractive exponents are taken as 12 and 6, respectively. The expression of the Helmholtz

energy density of SAFT-VR Mie EoS for a non associating chain fluid is given by79

a0 =
(
aIDEAL + aMONO + aCHAIN

)
ρ
Nav

β
(8)

where a = A/(NkBT ) and A is the total Helmholtz energy, N is the total number of

molecules, Nav is the Avogadro constant, T is the temperature, kB is the Boltzmann con-

stant, β = 1/(kBT ), and ρ is the molar density of the fluid. aMONO represents monomer

(unbounded) contribution for a chain composed of ms tangential segments, aCHAIN accounts

for the formation of chain molecules and aIDEAL is the ideal gas contribution. For a complete

overview of this model the reader is referred to Ref.79.

Coarse-graining of fluid potential using SAFT

In this work, the pure fluids are modelled as freely jointed tangential non associating

spheres (pearl-necklace model) characterized by five parameters: ms, λr, λa, ε, and σ, which

can be found from several routes. One could be tempted to fit these parameters to the

properties of a lower resolution model, e.g. a fully atomistic classic molecular model of the

Optimized Potentials for Liquid Simulations (OPLS) family105 . As the models proposed

here are of lower fidelity some degrees of freedom would have to be factored out during this

procedure which would result in a coarse grained (CG) model that is usually state dependent

and unreliable. An alternative approach is to use the equation of state to fit macroscopic

experimental thermophysical properties that derive from the Helmholtz energy, such as

pressures and densities along the vapour-liquid saturation curve. This approach provides

a pathway for obtaining robust parameters that describe the average pairwise interactions.

An implicit assumption is that the equation of state describes precisely the underlying

Hamiltonian, which is the case in the version of SAFT employed herein. This top-down

CG parametrization is discussed in detail by Müller and Jackson84. Talking this approach

further, Mej́ıa et al.106 expressed the SAFT-VR Mie EoS in a corresponding state form
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finding explicit links between a small number of well defined properties (critical temperature,

acentric factor, and liquid density) and the force field parameters. This latter procedure is

followed herein. The number of beads, ms, that describe a molecular model is determined

beforehand by observation of the molecule geometry. The underlying model requires the bead

to be tangent to each other and in a linear configuration (pearl-necklace model). Ramrattan

et al.107 have shown that there is a conformality relationship between the exponents of the

Mie potential; an infinite number of exponent pair (λa,λr) will provide essentially the same

field phase behaviour. Following this, we chose to fix the attractive potential λa = 6108

leaving the repulsive exponent λr = λ as the lone parameter that defines the range of the

intermolecular potential.

Once the EoS parameters have been fixed, Equation (8) is used to predict the vapor -

liquid phase equilibrium according to the conditions of isothermal phase equilibrium for bulk

phases:36

Ω
(
ρV

)
= Ω

(
ρL

)
= −P 0 (9)

(
∂Ω

∂ρ

)

T 0,V 0

=

(
∂a0
∂ρ

)

T 0,V 0

−
(
∂a0
∂ρ

)0

(10)

(
∂2Ω

∂ρ2

)

T 0,V 0

=

(
∂2a0
∂ρ2

)

T 0,V 0

> 0 (11)

Equation (9) corresponds to the mechanical equilibrium condition (P 0 = PL = P V ), Equa-

tion (10) expresses the chemical potential constraint ((∂a0/∂ρ)T,V ≡ µ, µ0 = µL = µV ), and

Equation (11) is a differential stability condition for interfaces, comparable to the Gibbs

energy stability constraint of a single phase.36

The influence parameter

In the original van der Waals theory, the influence parameter, c, is defined as a constant,

but modern versions of this theory reflect that this parameter should be a function of the

direct correlation function of the homogeneous fluid. According to Bongiorno et al.,73 and

Yang et al.,93 the rigorous definition of c is given by the following integral expression:
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c =
kBN2

avT

6

ˆ
V

r2c0 (r; ρ) dV (12)

where c0 (r; ρ) is the direct correlation function of homogeneous fluid and r is a spatial

coordinate. Since c0 (r; ρ) is intractable from an analytic viewpoint, some models have

been developed to estimate the influence parameters from other measurable or computable

quantities. According to Rowlinson and Widom,1 one of the most successful approximations

for c0 is to consider c0 (r; ρ) ≈ c0 (r;T ) where c0 (r;T ) can be described by the Percus -

Yevick approximation:109

c0 (r;T ) = g (r) [1− exp (−u (r) /kBT )] (13)

where g (r) is the radial distribution function of a fluid in the homogeneous state and u (r) is

the intermolecular potential, respectively. In a mean field approximation, a locally uniform

fluid distribution can be assumed, hence, g (r) ≈ 1. Linearizing Equation (13), a mean-

spherical approximation for the direct correlation function of homogeneous fluid can be

obtained:

c0 (r, T ) ≈ −u (r) /kBT (14)

which if replaced in Equation (12), and considering an isotropic fluid becomes

c = −4πN2
av

6

ˆ ∞

σ

r4u (r) dr (15)

Equation (15) represents the simplest approximate model for c and it acquires a final form

once the intermolecular potential is defined. For the case of the Mie potential (cf. Equa-

tion (6) and Equation (15)) simplifies to:

c =
−2πN2

avCεσ5

3

[(
1

λr − 5

)
−

(
1

λa − 5

)]
(16)

From Equation (16) it follows that c can be treated as a constant once the intermolecular

potential exponents (λr, λa) and fluid parameters (ε, σ) have been defined. Some particular

cases of Equation (16) have been used to predict the interfacial behavior of pure fluids and

fluid mixtures. For example, λr = 12 and λa = 6 (i.e., the Lennard-Jones potential104)

has been used by Carey,22,76 to predict the c value and relate it to the Peng - Robinson
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EoS77 constant (i.e., a and b), whereas Tardón et al.,110used it to predict the interfacial

behavior in asymmetric Lennard-Jones mixtures that display molar isopycnicity inversion.

The reported results of concentration profiles show a qualitative agreement between theory

and molecular simulations. Other examples include the use of λr = −∞ and λa = 6

(i.e., the Sutherland potential111). This potential has been used by Poser43,44,95 to describe

the interfacial properties of low molecular weight fluids and some polymers and Mej́ıa and

Segura31,32 used it to explore qualitatively the multiphase interfacial behavior of Type IV

and Shield region. While a constant c value (cf. Equation (16)) can be used for describing

qualitatively the interfacial properties for pure fluids and fluid mixtures, some previous

works48,53,72 based on molecular simulations and SGT have demonstrated that the c values

necessary are a function of the shape factor (elongation, chain length, etc.) for non-spherical

molecular fluids and seen to vary with temperature. Specifically, Duque et al.,48 have shown

that as the molecular chain length increases the c values increases whereas Baidakov et al.,72

and Galliero et al.53 reported values of c as a function of temperature for the case of spherical

fluids. In addition, the values calculated from Equation (16) for the case of monomer

Lennard-Jones pure fluids display some over-predictions when they are compared to the

values obtained from molecular simulation results. As an illustrative example, Equation (16)

predicts c ≃ 7.181N2
avεσ

5 for a Lennard-Jones pure fluid which is 1.6 times the value reported

by Duque et al.,48.

In summary, the mean-spherical approximation for the direct correlation function of

homogeneous fluid provides a route to obtain an analytical expression for c. This expression

can be used for qualitative description of interfacial properties from SGT, but requires

refinement if it is to be used as a predictive tool. In this work, the refinement of the theory

is carried out by exploiting the direct link between EoS and the underlying intermolecular

potential. Specifically, molecular simulations of the chain fluids composed of Mie beads are

compared to the theory seeking a quantitative agreement. These resulting equations are the

base for a molecular thermodynamic framework to correlate the IFT of industrial - relevant

fluids.
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COMPUTATIONAL METHODS

In order to have a high fidelity data set for molecular fluids, we have carried out Molecular

Dynamics (MD) simulations of pure fluid interfacial properties, using the direct coexistence

technique in inhomogeneous simulation boxes. We employ here canonical simulations where

N molecules at a fixed temperature T are placed in a parallelepipedic simulation cell of

constant volume V .4,112 Following the methodology proposed by Mart́ınez-Veracoechea and

Müller113 all simulations are started from a high temperature homogeneous monophasic sys-

tem that is quenched abruptly to the simulation temperature until equilibration is reached

through diffusive mass transport. In this work, chain molecules are treated as freely-jointed

tangent Mie spheres, i.e., bond distances are kept constant at a value of σ and no further

intra-molecular interactions are considered. All the sites have the same mass, and inter-

act with each other through an effective pairwise Mie λr − 6 intermolecular potential (c.f.

Equation (6)).

MD simulations are performed on systems containing from 6500 to 12600 Mie beads at

conditions where the vapor-liquid interface is present. The simulation cell is a Lx ×Ly ×Lz

parallelepiped with periodic boundary conditions in all three directions. Specifically, Lx and

Ly are parallel to the interfacial surface, while Lz direction is normal to the interface. These

values are chosen to ensure a cell large enough to accommodate liquid and gas regions with

enough molecules to ensure a representative bulk phase. To guarantee this, Lz was fixed

to be much larger than Lx and Ly. Typically Lx = Ly = 20σ and Lz is set to be 5 to

7 times larger. In all cases, the two interfaces spontaneously appear in the x − y plane.

In order to reduce the potential truncation and system size effects involved in the phase

equilibrium and interfacial properties calculations, the cut-off radius (rc) has been taken

equal to a relatively large value of 10σ. It has been shown53,114,115 that a cut-off above six

segment diameters provides a reliable description for the pressure and interfacial properties

of the Lennard-Jones fluid and we expect that to translate to Mie fluids.

A modified version of the DLPOLY simulation package (which includes a specific routine

to perform pressure components profile calculations) has been used, considering a Verlet-

leapfrog116 algorithm with a time step of 0.003 in reduced units of σ
√

M/ε, where M denotes

the particle or atom mass, and a Nose-Hoover thermostat117,118 with a time constant equal

to 1.0 in reduced units of σ
√

M/ε. After the initial temperature quenching, the systems
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are equilibrated for 1 × 105 time steps. After this equilibration stage, a production run is

performed for at least another 4× 105 time steps.

In order to characterize the bulk phase and interfacial behavior, density profiles are

calculated by dividing the system in 400 slabs along the z direction. The molecular density

profiles, ρi (z), are obtained by assigning the position of each bead, zi, to the corresponding

slab, and constructing the molecular density from mass balance considerations. Additionally,

these profiles are displaced so that the center of mass of the liquid slab lies at the center of the

simulation cell, this displacement helps to avoid smearing of the profiles due to fluctuations

of the center of mass location. In order to estimate errors on the variables computed, the

sub-blocks average method has been applied.119 In that approach, the production period is

divided into n independent blocks. The statistical error is then deduced from the standard

deviation of the average divided by n1/2. The equilibrium pressure and interfacial tension

are obtained using the Irving-Kirkwood method, where the profiles of the pressure tensor

diagonal elements are calculated employing the virial expression:10

Pkk = kBTρ (z) +
1

S

〈
N−1∑

i

N∑

j>i

1

|zi − zj|
(fij)k (rij)k

〉
(17)

where Pkk is the pressure tensor elements, the subscript kk represents the spacial coordinate,

either x, y, or z, kB is Boltzmann’s constant, T is the absolute temperature, S is the

interfacial area, N is the number of molecules, fij is the force on molecule i due to molecule

j, and rij represents the distance between molecules i and j. fij, rij contributions have been

equally distributed among the slabs corresponding to each molecule and all the slabs between

them. The term kBTρ (z) in Equation (17) takes into account the kinetic contribution, which

is proportional to the ideal gas pressure. The term into the ⟨· · · ⟩ brackets corresponds to

the configurational part which is evaluated as ensemble averages and not at instantaneous

values. From the pressure elements of Equation (17), the vapor pressure can be determined,

corresponding to the Pzz element, while the interfacial tension, γ, can be calculated as9

γMD =
1

2

ˆ +∞

−∞

[
Pzz (z)−

Pxx (z) + Pyy (z)

2

]
dz (18)

In this expression, the additional factor 1/2 comes from having two interfaces in the system.

The specific details related to the technical implementation of the previous expressions and

their evaluations have been discussed extensively in the literature (see Refs8,49,and120 for
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further details). This method, based on the mechanical definition of the pressure tensor,

has been selected in this case among the diverse alternatives available, as for instance the

so-called Test-Area method11, that produces equivalent results for this type of systems, as

demonstrated by Galliero et al.53

RESULTS AND DISCUSSION

New expression for the influence parameter

The direct correspondence of SAFT-VR-Mie Eos with the results obtained from an exact

solution, obtained via molecular simulations, of the macroscopic behavior of the underlying

intermolecular potential suggests the possibility of obtaining the influence parameter directly

by forcing the SGT+ EoS model to reproduce exactly interfacial tension data, as proposed

originally by Carey.22,76 However, instead of employing data of real fluids. In order to

consistently match the SGT to the IFT data, we use the same fluid model in MD and SGT.

The advantage of this combination is that the fluid is described by the same five parameters:

ms, λr, λa, ε, and σ in both approaches. As explained previously, the attractive exponent

can be fixed (λa = 6) leaving the repulsive exponent λr = λ as the lone parameter that

defines the range of the intermolecular potential, without any loss of generality.106,107

In order to combine the MD results of IFT (Equation (18)) to SGT (Equation (5)), we

postulate that c is a constant for each particular fluid (i.e., c = ℑ (ms, ε, σ,λ, 6)). If so, the

influence parameter can be regressed from the integral (Equation (5)). It proves valuable to

express the IFT from MD (Equation (18)) and SGT (Equation (5)) in reduced variables:

γ∗
MD =

1

2

ˆ +∞

−∞

[
P ∗
zz (z

∗)−
P ∗
xx (z

∗) + P ∗
yy (z

∗)

2

]
dz∗ (19)

γ∗
SGT =

1

ms

√
2c

εσ5

ˆ ρ∗,L

ρ∗,V

√
(Ω∗ + P ∗,0)dρ∗ (20)

Of course, both equations, Equation (19) and Equation (20), must provide the same numer-

ical results as we compare the exact results from MD to those predicted from the theory.

The integral on the right hand side of Equation (20) can be evaluated without recourse to

specifying a particular value of the influence parameter, hence a plot of the tension calcu-

lated through MD (γ∗
MD) as a function of the

´ ρ∗,L
ρ∗,V

√
2 (Ω∗ + P ∗,0)dρ∗ provides a means of
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evaluating the prefactor of Equation (20), namely 1
ms

√
c

εσ5 . Since ms, ε and σ are specified

a priori, the procedure provides an explicit value of the influence parameter.

Figure 1 shows the results from MD vs. SGT (i.e. γ∗
MD vs.

´ ρ∗,L

ρ∗,V

√
2 (Ω∗ + P ∗,0)dρ∗) for

pure fluids with different molecular chain length (i.e., ms = 1 to ms = 6) and some selected

values of λ (Figure 1(a): λ = 8 ; Figure 1(b): λ = 10; Figure 1(c):, λ = 12; Figure 1(d):

λ = 20). Simulation and theory results span a wide range of temperatures and chain lengths.

Figure 1 evidences a remarkable linear dependence between the ordinate and the abscissa for

each Mie λ−6 fluid, up to a chain length valuems = 6. The slope of these curves corresponds

to the term: (1/ms)
√

c/εσ5. In other words, the straight lines in Figure 1 can be used to

regress a temperature-independent influence parameter. This behavior clearly evidences a

quasi-perfect universal behavior, which had already been predicted using scaling laws and

was suggested from a corresponding states viewpoint. Particularly, Blas and co-workers

have presented results121–124 studying the interfacial properties for the Lennard-Jones fluids

(for both flexible and rigid chains) showing a similar agreement. Galliero114 also reported

similar behavior by using a corresponding states approach for the case of short flexible

Lennard-Jones chains, composed of up to 5 segments.

In the Supporting Information we summarizes the numerical values of the slopes for Mie

λ − 6 fluids as a function of λ. (see table S. I). The challenge is to be able to generalise

these results. Recently, Ramrattan et al.,107 pointed out that the behaviour of Mie fluids is

governed by the value of the integrated cohesion energy captured by the so-called the van

der Waals constant, α, defined as:125

α =
1

εσ3

ˆ ∞

σ

u (r) r2dr = C

[(
1

λa − 3

)
−
(

1

λr − 3

)]
(21)

Considering a constant value for the attractive exponent (λa = 6), the value of the

repulsion exponent is λr = λ and the latter expression reduces to:

α =
λ

3 (λ− 3)

(
λ

6

)6/λ−6

(22)

From the results presented in table S. I presented in supplementary information, it is

possible to observe that (1/ms)
√

c/εσ5 decreases with α, for a extended range of repulsive

exponents. Indeed, from this analysis the term (1/ms)
√

c/εσ5 can be correlated linearly

with the van der Waals constant, α, and thus, we propose the following generalized function
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for the influence parameter of Mie λ− 6 chains fluids:

√
c

N2
avεσ

5
= ms (0.12008 + 2.21979α) (23)

Equation (23) is a general expression for the calculation of the influence parameter, valid

for ms = 1 to 6 and λ = 8 to 38.

It is interesting to point out the differences between the estimation of influence parame-

ters presented here to the results published using previous versions of SAFT-VR Mie126,127

coupled with SGT. In this work, we obtain a temperature-independent influence parameter

for very soft potentials such as for instance the Mie (8-6) fluid, even when chain length

increases (c.f. Figure 1(a)). For the same soft potential, Galliero et al.,53 have obtained a

different behaviour using a previous SAFT-VR Mie model. In fact, they reported a strongly

temperature dependent influence parameter, especially when the fluid is approaching the

critical region. Presumably this thermal dependence of the influence parameter is an arti-

fact product of the inability of previous SAFT models to represent accurately the critical

and near-critical region128. The success of the current version of the SAFT theory relies on

the extraordinary ability of the third-order expansion term proposed by Lafitte et al.79 to

produce a satisfactory description of VLE near the critical region.

Interfacial Properties for Molecular Fluids

The correlation proposed above is validated by comparing the results obtained from the

SGT + SAFT-VRMie EoS to MD simulation results for the same molecular models (i.e., Mie

chains of variable repulsive exponent value and number of segments). Specifically, we test

the accuracy of Equation (23) for use within the theory for predicting interfacial properties,

such as interfacial density, ρ∗s = ρsσ3, profile along the interfacial region, z∗ = z/σ and

interfacial tension, γ∗ = γσ2/ε. Figure 2 shows the ρ∗s − z∗profiles for the case of molecular

chain fluids (ms = 2, 3, 4, and 5) interacting by a Mie (10-6) potential. As expected, as the

temperature increases, the interfacial region becomes wider, however the take-home message

from these figures is the very good agreement between MD and SGT with the influence

parameter calculated from Equation (23). In addition to the interfacial profiles in Figure 3

we display the interfacial tension as a function of temperature (γ∗−T ∗) for molecular chain

fluids (ms = 1 to 6) interacting through a Mie (λ, 6) potential with λ = 8, 10, 12, 20. From
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Figure 3 it is possible to observe that at fixed Mie (λ, 6) and ms, the interfacial tension

decreases as the temperature increases, showing a characteristic hyperbolic tangent curve

near to the critical state. From these figures, it evident how for a fixed value of the Mie

(λ, 6) potential, the interfacial tension increases with ms. Again the key issue evident in

Figure 3 is the excellent quantitative agreement between both approaches (MD and SGT),

over a wide range of repulsive exponents, molecular chain lengths and temperature, including

a satisfactory description near the critical region. The average absolute deviation of the

results displayed in Figure 3 are 2.8 % for Mie (8, 6), 1.67% for Mie (10, 6), 1.28 % for Mie

(12, 6) and 2.31% for Mie (20, 6).

As a comparison, Figure 3(c) includes the γ∗ − T ∗ results for the case of Lennard-Jones

chain fluid Mie (12-6) reported by Duque et al.48. The results reported here display a better

agreement to MD results than those reported by Duque et al.,48 particularly for the longer

chains.

Corresponding States correlations for interfacial tension

An essential part of the seminal work of van der Waals is the idea that the properties

of fluids could be scaled with respect to those of the critical point, providing a meas of

reporting a universal behaviour reffered to as the corresponding states principle. For the

case of interfacial tension, γ, van der Waals16 used the critical pressure (Pc) and critical

temperature (Tc) of the fluid to form the dimensionless group γ/P 2/3
c T 1/3

c and he proposed

to correlate it with (1− T/Tc). Based on the van der Waals ideas, some authors have used

the corresponding state principia to propose interfacial tension correlations. According to

Poling et al.,13 the most popular correlations, based on the corresponding state principia,

are the Brock and Bird129, Pitzer,130 Zuo and Stenby,131 and Sastri and Rao.132

Specifically, Brock and Bird129 have correlated γ as a function of Pc, Tc and the normal

boiling temperature (Tb) for nonpolar fluids:

γ

P 2/3
c T 1/3

c

= (0.132αc − 0.279) (1− Tr)
11/9 (24)

In Equation (24) Tr is the reduced temperature (Tr = T/Tc) and αc is the Riedel133 parameter

at the critical point. This parameter has been correlated to Pc and Tb by Miller:134
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αc = 0.9076

[
1 +

Tbr ln (Pc/1.01325)

1− Tbr

]
(25)

In the last expression, Tbr denotes the reduced normal boiling temperature (Tbr = Tb/Tc).

In Equations (24) and (25), the temperature is in Kelvin and the pressure is in bars.

A second popular correlation has been proposed by Curl and Pitzer:130

γ

P 2/3
c T 1/3

c

=
1.86 + 1.18ω

19.05

[
3.75 + 0.91ω

0.291 + 0.08ω

]2/3
(1− Tr)

11/9 (26)

As an extension of the scaling proposed initially by Guggenheim14, in the Pitzer expression,

ω is the acentric factor, which is related to the deviation between the vapor pressure of a

given fluid and that of a noble gas. A further correlation for γ has been proposed by Zuo and

Stenby.131 In this work, the authors interpolate between two well-defined reference fluids.

The final expression for γ is given by the following expressions:

γr = ln

(
1 +

γ

P 2/3
c T 1/3

c

)
(27)

γr = γ(a)
r +

ω − ω(a)

ω(b) − ω(a)

(
γ(b)
r − γ(a)

r

)
(28)

the superscripts (a) and (b) denote the reference fluids. Zuo and Stenby recommend to use

methane
(
γ(a) = 40.520 (1− Tr)

1.287) and n-octane
(
γ(b) = 52.095 (1− Tr)

1.21548).

According to Poling et al.,13 the methods described previously are satisfactory for nonpo-

lar liquids. For other chemical families, such as alcohol and acids, Poling et al.,13 recommend

the use of Sastri and Rao correlation:132

γ = KP x
c T

y
b T

z
c

[
1− Tr

1− Tbr

]m
(29)

In Equation (29) K, x, y, z, m are constants unique for each chemical family. For

example for alcohols: K = 2.28, x = 0.25, y = 0.175, z = 0, m = 0.8. For acids: K = 0.125,

x = 0.50, y = −1.5, z = 1.85, m = 11/9. For other families: K = 0.158, x = 0.50,

y = −1.50, z = 1.85, m = 11/9. Some application examples of the previous expression can

be found in Poling et al.13

In addition to the previous correlations, Miqueu et al.,135 have proposed the following

expression:
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γ = kBTc

(
Nav

Vc

)
(4.35 + 4.14ω) t1.26

(
1 + 0.19t0.5 + 0.25t

)
(30)

In Equation (30), Vc is the critical volume of the fluid and t = 1−T/Tc. This correlation

has been successfully applied for petroleum fluids (i.e. light gases, saturated hydrocarbons,

aromatics) and polar compounds (i.e. refrigerants).

Interfacial Properties for Industrial Fluids

In this section, we test the proposed correlation for the case of industrial fluids. It is

important to note that the approach used here is able to only to calculate the variation of

the interfacial tension to the temperature but also to calculate the interfacial density profiles.

As an example, we retake the model for hexane discussed in detail in Ref.106. Hexane is

modelled in a coarse-grained fashion as a dimer, ms = 2, and following the M & M procedure

described in Ref.106, an exponent of λ = 19.26 is obtained. Use of Equation (22) prescribes

a value of α = 0.669. Further use of the correlations in Ref.106 yield ε/kB = 376.35 K and

σ = 4.508Å. With these data Equation (23) produces a value of c = 36.182×10−20Jm5mol−2

The predicted results for phase equilibria, density profiles and surface tension are shown in

Figures 4(a)-(d). Specifically, Figures 4(a)-(b) show the phase equilibrium in ρ−T and T−P

projections, respectively. In these Figures we have included SAFT-VR Mie predictions,

Molecular Dynamics results employing the same potentail (λ = 19.26,ε/kB = 376.35 K and

σ = 4.508Å) and recommended experimental data from DECHEMA136 and Figures 4(c)-(d)

display the interfacial properties calculated from SAFT-VR Mie + SGT and the proposed

expression for the influence parameter (see Equation (23)) and MD simulations carried out

by using the same Mie parameters than the theory. From Figure 4(c), it is seen that these

profiles display the expected behavior, (i.e., they decrease monotonically across the interface

following s hyperbolic tangent shape, that spans from the liquid to the vapor bulk phase).

Noticeably there is a very good agreement between theory and simulations over a broad

temperature range. Figure 4(d) represents the interfacial tension behavior as a function of

temperature. From the latter figures, it is evident that here is a remarkable quantitative

agreement to the MD results as well as to experimental tensiometry results all the way from

low temperatures to the critical temperature. In the Supporting Information, we include

a workbook written in Mathematica code that performs all calculations described above of
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n-hexane.

In order to evaluate the performance of SAFT-VR Mie + SGT and the new expression for

the influence parameter (see Equation (23)), we selected some test fluids (e.g. hydrocarbons,

N2, refrigerants, etc.), and applied a two-step predictive approach. First, the fluids are

idealized as chains of CG tangential spheres interacting with each other through a Mie

(λ − 6) potential, whose parameters (ms, ε, σ,λ) are obtained by using the corresponding

state principia described by Mej́ıa et al.106. Basically, in this step once the number of beads

in the chain is defined (ms) by examining the overall molecular geometry (i.e. its length to

beadth ratio), the value of λ is calculated from the acentric factor of the fluid (ω), expressing

the relationship between the range of the potential and the vapor pressure of the fluid. In

an analogous fashion, the energy parameter (ε) is obtained from the critical temperature of

the fluid (Tc), and the value of σ is calculated from the liquid density evaluated at 0.7 of Tc.

Once the Mie (λ−6) parameters have been identified, the van der Waals constant, α, can be

computed from Equation (22) and the influence parameter is obtained from Equation (23).

A second final step is to calculate the phase equilibrium from Equations (9) to (11) and the

corresponding interfacial tension from Equation (5).

Table I summarizes the Mie λ − 6 parameters for an unabridged selection of fluids,

taken from Ref.106, and Figures 5(a)-(b) displays the variation of the interfacial tension

with temperature for these selected fluids. These Figures include also the experimental

tensiometry data reported by The Dechema data base.136 Figure 5(a) displays the very good

agreement with experimental data obtained from the theory. In fact, the overall Average

Absolute Deviation (%AAD γ) of the calculated interfacial tensions is 2.8 % in the case of

hydrocarbons (see Figure 5(a)), and 3.7 % for the other fluids selected (see Figure 5(b)).

In order to evaluate the performance of the proposed methodology to other correlations,

table II includes the Average Absolute Deviation for the interfacial tension (%AAD γ) ob-

tained from this work (i.e., from Equation (5) and (23) and those calculated from correlations

based on the corresponding state principia. Specifically, table II summarizes the %AAD γ

obtained from the correlations developed by Brock and Bird129, Curl and Pitzer130, Zuo and

Stenby131, Sastri and Rao132 and Miqueu et al.,135. It is seen that the proposed method is

not only more accurate than other available correlations, but it is also broader in terms of

applicability range.
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CONCLUDING REMARKS

Several correlations exist which, based on semi-empirical corresponding states principia

or otherwise, allow the calculation of interfacial tension of industrially relevant fluids. How-

ever, their application is typically restricted to the chemical family used to fix the constants

involved. In this work we combine a molecular thermodynamic theory and molecular sim-

ulations in order to obtain faithful description of the tensiometry of molecular models of

fluids and a mapping of it to experimental data. Specifically, this work combines a theo-

retical approach based on the SAFT-VR Mie EoS with the Square Gradient Theory (SGT)

and Molecular Dynamics (MD). This approach is based on the description of the interfacial

properties for short flexible chains composed of 2, 3, 4, 5 and 6 freely-jointed tangent spheres

through a Mie λ − 6 (λ = 8, 10, 12, 20) potential. From the MD results, a simple, flexible

and accurate expression for the correlation of the influence parameter in SGT is obtained.

This expression provides a route to calculate the influence parameters for pure chain fluids

by only using the molecular characteristics of the model fluid ((ms, ε, σ,λ)). By combining

this approach with previous mappings of the Mie potential to pure fluids (Ref.106) one can

effectively predict the bulk and interfacial properties of pure fluids from the knowledge of

only three widely available properties: the critical temperature, the accentric factor, and a

liquid density. A key aspect of the methodology is the internal consistency of the molecular

model, i.e. both the theory and the simulations are based on the same set of unique force

field descriptors. The correlation for the influence parameter can be used for describing

molecular coarse grained fluids with an absolute deviation lower than 2.02%.

Uniquely, the procedure could also be inverted: given the interfacial tension of a fluid, a set

of Mie parameters can be specifically found by a simple analytical approach without the need

of performing simulations. This is particularly useful in developing top-down coarse-grain

potential for simulations of surfactants and interfacial fluids. This extension is not pursued

here but will be the subject of future work.

The proposed molecular model is both robust and transferable, producing both as set of

molecular parameters amenable to be used in molecular simulation and a fully consistent

theory for predicting the interfacial properties of Mie fluids. It is applicable in as much as

a homonuclear non-associating chain remains a good model of the pure fluid; i.e. if is not

expected to work for strongly associating fluids (e.g. water and small alcohols). However,
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where applicable, the predictions show a remarkable accuracy when compared to traditional

corresponding state principa correlations. In addition, the proposed approach not only gives

an excellent model to predict the interfacial tension over a wide temperature range, even

very close to the critical region, but also provides a route to obtain microscopic information

of the interfacial region, such as interfacial density profiles.
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acterization of Interfacial Behavior for the Mixture CO2+H2O+CH4: Comparison between

28



Atomistic and Coarse Grained Molecular Simulation Models and Density Gradient Theory.

J Phys Chem C. 2014;118(42):24504–24519.

[66] Cumicheo C, Cartes M, Müller EA, Mej́ıa A. High-pressure densities and interfacial ten-

sions of binary systems containing carbon dioxide + n-alkanes: (n-Dodecane, n-tridecane,

n-tetradecane). Fluid Phase Equilib. 2014;380:82–92.

[67] Mej́ıa A, Cartes M, Segura H, Müller EA. Use of Equations of State and Coarse Grained

Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon

Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures. J Chem Eng Data. 2014;

50(10):2928–2941.
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[127] Lafitte T, Piñeiro MM, Daridon JL, Bessières D. A Comprehensive Description of Chem-

ical Association Effects on Second Derivative Properties of Alcohols through a SAFT-VR

Approach. J Phys Chem B. 2007;111(13):3447–3461.

[128] Wu J. Density functional theory for liquid structure and thermodynamics. In: Molecular

Thermodynamics of Complex Systems, edited by Lu X, Hu H, vol. 131 of Structure and

Bonding, chap. 1, pp. 1–74. Springer, New York. 2009;.

[129] Brock JR, Bird RB. Surface Tension and the Principle of Corresponfing States. AIChE J.

1955;1(2):174–177.

33



[130] Curl RFJ, Pitzer KS. Volumetric and Thermodynamic Properties of Fluids-Enthalpy, Free

Energy, and Entropy. Ind Eng Chem. 1958;50:265–274.

[131] Zuo YX, Stenby EH. Corresponding-States and Parachor Models for the Calculation of

Interfacial Tensions. Can J Chem Eng. 1997;75:1130–1137.

[132] Sastri SRS, Rao KK. A simple method to predict surface tension of organic liquids. J Chem

Eng. 1995;59:181–186.

[133] Riedel L. Eine neue universelle Dampfdruckformel Untersuchungen uber eine Erweiterung

des Theorems der ubereinstimmenden Zustande. Chem Ing Tech. 1954;26:83–89.

[134] Miller DG. On the reduced Frost-Kalkwarf vapor pressure equation. Ind Eng Chem Fundam.

1963;2:78–79.

[135] Miqueu C, Broseta D, Satherley J, Mendiboure B, Lachaise J, Graciaa A. An extended scaled

equation for the temperature dependence of the surface tension of pure compounds inferred

from an analysis of experimental data. Fluid Phase Equilib. 2000;172:169–182.

[136] DECHEMAGesellschaft für Chemische Technik und Biotechnologie e.V., Frankfurt amMain,

Germany, https://cdsdt.dl.ac.uk/detherm/, (retrieved February, 2015).

34



FIGURES CAPTIONS

FIGURE 1

Relationship between reduced tensions calculated from MD (abscissa) and the results from

SGT (c.f. eq. (20)). The slope of the curve is proportional to
√
c/(ms). (a) Mie (8-6), (b)

Mie (10-6), (c) Mie (12-6), (d) Mie (20-6) molecular chains fluid. Mie λ-6 chains formed

from ms = 1 (circle), ms = 2 (squares), ms = 3 (diamonds), ms = 4 (inverted triangles),

ms = 5 (triangles), ms = 6 (right triangles) segments.

FIGURE 2

Density profiles across the vapour-liquid interface of flexible Mie 10-6 chains formed by (a)

ms = 2, (b) ms = 3, (c) ms = 4 and (d) ms = 5. (Solid line) density profiles calculated

with the SAFT-VR Mie + SGT and Equation (23) for the influence parameter, (stars)

Density profiles obtained from MD simulations.

FIGURE 3

Interfacial tensions (γ∗) as a function of temperature (T ∗) for molecular chain fluids with

ms = 1 to 6 interacting by a Mie λ− 6 potential. (a) Mie (8-6); (b) Mie (10-6); (c) Mie

(12-6); (d) Mie (20-6). (Solid line) calculated with the SAFT-VR Mie + SGT and

Equation (23) for the influence parameters. (dash dotted line) calculated with the

LJ-Chains + SGT using the influence parameter proposed by Duque et al.48. Symbols as

in Figure 1.

FIGURE 4

Phase equilibria and interfacial properties for n-hexane. (a) Coexistence densities (ρ− T

projection); (b) vapor pressure (T − P projection); (c) density profile across the

vapor-liquid interface (ρ− z projection); (d). Interfacial tension (γ − T projection). (Solid

line) SAFT-VR Mie + SGT with the influence parameter calculated from Equation (23).

(stars) density profiles obtained from MD simulations, (squares) results from MD

simulations; (filled black circle) recomended experimental data from DECHEMA136.

FIGURE 5

Comparison between calculated (lines) with the SAFT-VR Mie+SGT and Equation (23)

for the influence parameters and experimental136 (symbols) interfacial tensions as a

function of temperature for various components. Information about the SAFT-VR Mie
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parameters that were used in the calculations and the experimental data can be found in

table II.
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TABLE I: Force field parameters for some Coarse Grained Mie λ− 6 fluids.

Fluid ms ε/kB (K) σ (A) λ α 10−20 × c (Jm5mol−2)

Methane (CH4) 1 170.75 3.752 16.39 0.729 1.921

Propane (C2H6) 1 426.08 4.929 34.29 0.518 10.387

Sulfur Hexafluoride (SF6) 1 389.10 4.898 43.97 0.490 8.015

Tetrafluoromethane (CF4) 1 269.37 4.381 38.34 0.510 3.415

Nitrogen (N2) 1 122.85 3.753 20.02 0.656 1.140

Hexane (C6H14) 2 376.35 4.508 19.26 0.669 36.182

Heptane (C7H16) 2 436.13 4.766 23.81 0.606 46.227

Naphthalene (C10H8) 2 557.75 4.623 19.50 0.665 60.132

p-Xylene (C8H10) 2 475.76 4.524 21.17 0.639 42.889

HFO-1234yf (C4H2F4) 2 265.53 4.074 18.22 0.688 16.215

Butanal (C4H8O) 2 382.23 3.998 17.69 0.699 21.864

Decane (C10H22) 3 415.19 4.585 20.92 0.643 90.785

HFC (C5H2F10) 3 279.42 4.068 17.36 0.706 39.963

Tetradecane (C14H30) 4 438.11 4.619 22.22 0.625 167.920

Eicosane (C20H42) 6 453.10 4.487 24.70 0.597 310.718
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TABLE II: Average Absolute Deviation for the interfacial tension (%AADγ)a reported in

this work and some corresponding state correlations to the experimental data.

Fluid %ADDγb %ADDγc %ADDγd %ADDγe %ADDγf %ADDγg

Methane (CH4) 0.94 4.73 2.64 6.97 2.34 2.21

Propane (C2H6) 1.23 6.16 2.71 7.19 2.89 4.78

Sulfur Hexafluoride (SF6) 8.74 12.34 12.32 16.87 4.38 3.32

Tetrafluoromethane (CF4) 22.64 21.62 21.84 20.88 18.24 1.93

Nitrogen (N2) 4.36 5.27 3.07 19.61 2.79 0.79

Hexane (C6H14) 1.25 6.38 2.08 5.77 2.63 0.82

Heptane (C7H16) 1.99 6.86 2.37 6.21 2.32 1.95

Naphthalene (C10H8) 12.12 19.62 12.04 12.53 12.94 3.55

p-Xylene (C8H10) 5.33 9.85 5.62 4.10 6.68 3.03

HFO-1234yf (C4H2F4) 4.25 6.87 4.89 7.14 5.13 2.98

Butanal (C4H8O) 2.47 3.87 2.87 3.87 4.48 4.31

Decane (C10H22) 7.52 11.32 9.26 10.25 7.91 1.22

HFC (C5H2F10) 6.84 10.24 7.14 9.87 7.54 3.23

Tetradecane (C14H30) 11.53 16.57 14.21 18.63 9.49 0.97

Eicosane (C20H42) 20.89 35.69 18.91 38.64 14.92 0.72

7.47 11.83 8.13 12.57 6.98 2.39

a %AADγ = 1
NP

∑NP

i

∣∣∣γ
exp
i −γcalc

i

γexp
i

∣∣∣× 100, where exp. denotes experimental data taken from

DECHEMA136, cal. represents calculated values, and Np corresponds to data points which are taken

from the triple point to the critical point
b Brock and Bird129

c Curl and Pitzer130

d Zuo and Stenby131

e Sastri and Rao132

f Miqueu et al.135

g This work

43


