285 research outputs found
Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling
Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways.Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress.Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy
Prenatal Stress and Balance of the Child's Cardiac Autonomic Nervous System at Age 5-6 Years
Objective: Autonomic nervous system (ANS) misbalance is a potential causal factor in the development of cardiovascular disease. The ANS may be programmed during pregnancy due to various maternal factors. Our aim is to study maternal prenatal psychosocial stress as a potential disruptor of cardiac ANS balance in the child. Methods: Mothers from a prospective birth cohort (ABCD study) filled out a questionnaire at gestational week 16 [IQR 12– 20], that included validated instruments for state anxiety, depressive symptoms, pregnancy-related anxiety, parenting daily hassles and job strain. A cumulative stress score was also calculated (based on 80 th percentiles). Indicators of cardiac ANS in the offspring at age 5–6 years are: pre-ejection period (PEP), heart rate (HR), respiratory sinus arrhythmia (RSA) and cardiac autonomic balance (CAB), measured with electrocardiography and impedance cardiography in resting supine and sitting positions. Results: 2,624 mother-child pairs, only single births, were available for analysis. The stress scales were not significantly associated with HR, PEP, RSA and CAB (p0.07). Conclusion: Results did not support the hypothesis that prenatal maternal psychosocial stress deregulates cardiac AN
Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva
BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate <0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood
Maternal Psychosocial Stress during Pregnancy and Placenta Weight: Evidence from a National Cohort Study
To study in a large-scale cohort with prospective data the associations between psychosocial stress during pregnancy and placenta weight at birth. Animal data suggest that the placenta is involved in stress-related fetal programming.; We defined a priori two types of psychosocial stress during pregnancy, life stress (perceived burdens in major areas of life) and emotional symptoms (e.g. anxiety). We estimated the associations of maternal stress during pregnancy with placenta weight at birth, controlled for length of gestation, by predicting gestational age- and sex-specific z-scores of placenta weight through multiple regression analysis, adjusted for potential confounders (N?=?78,017 singleton pregnancies). Life stress (per increase in stress score by 1, range: 0-18) during pregnancy was associated with increased placenta weight at birth (z-score, reported in 10(-3); B, 14.33; CI, 10.12-18.54). In contrast, emotional symptoms during pregnancy were not associated with placenta weight at birth.; Maternal life stress but not emotional symptoms during pregnancy was associated with increased placenta weight at birth; yet, the association-estimate was rather small. Our results may contribute to a better understanding of the role of the placenta in the regulation of intrauterine processes in response to maternal stress
Cardio-metabolic risk in 5-year-old children prenatally exposed to maternal psychosocial stress: the ABCD study
<p>Abstract</p> <p>Background</p> <p>Recent evidence, both animal and human, suggests that modifiable factors during fetal and infant development predispose for cardiovascular disease in adult life and that they may become possible future targets for prevention. One of these factors is maternal psychosocial stress, but so far, few prospective studies have been able to investigate the longer-term effects of stress in detail, i.e. effects in childhood. Therefore, our general aim is to study whether prenatal maternal psychosocial stress is associated with an adverse cardio-metabolic risk profile in the child at age five.</p> <p>Methods/design</p> <p>Data are available from the Amsterdam Born Children and their Development (ABCD) study, a prospective birth cohort in the Netherlands. Between 2003-2004, 8,266 pregnant women filled out a questionnaire including instruments to determine anxiety (STAI), pregnancy related anxiety (PRAQ), depressive symptoms (CES-D), parenting stress (PDH scale) and work stress (Job Content Questionnaire).</p> <p>Outcome measures in the offspring (age 5-7) are currently collected. These include lipid profile, blood glucose, insulin sensitivity, body composition (body mass index, waist circumference and bioelectrical impedance analysis), autonomic nervous system activity (parasympathetic and sympathetic measures) and blood pressure.</p> <p>Potential mediators are maternal serum cortisol, gestational age and birth weight for gestational age (intrauterine growth restriction). Possible gender differences in programming are also studied.</p> <p>Discussion</p> <p>Main strengths of the proposed study are the longitudinal measurements during three important periods (pregnancy, infancy and childhood), the extensive measurement of maternal psychosocial stress with validated questionnaires and the thorough measurement of the children's cardio-metabolic profile. The availability of several confounding factors will give us the opportunity to quantify the independent contribution of maternal stress during pregnancy to the cardio-metabolic risk profile of her offspring. Moreover, the mediating role of maternal cortisol, intrauterine growth, gestational age and potential gender differences can be explored extensively. If prenatal psychosocial stress is indeed found to be associated with the offspring's cardio-metabolic risk, these results support the statement that primary prevention of cardiovascular disease may start even before birth by reducing maternal stress during pregnancy.</p
Impaired Executive Function Mediates the Association between Maternal Pre-Pregnancy Body Mass Index and Child ADHD Symptoms
Increasing evidence suggests exposure to adverse conditions in intrauterine life may increase the risk of developing attention-deficit/hyperactivity disorder (ADHD) in childhood. High maternal pre-pregnancy body mass index (BMI) has been shown to predict child ADHD symptoms, however the neurocognitive processes underlying this relationship are not known. The aim of the present study was to test the hypothesis that this association is mediated by alterations in child executive function.A population-based cohort of 174 children (mean age = 7.3 ± 0.9 (SD) yrs, 55% girls) was evaluated for ADHD symptoms using the Child Behavior Checklist, and for neurocognitive function using the Go/No-go task. This cohort had been followed prospectively from early gestation and birth through infancy and childhood with serial measures of maternal and child prenatal and postnatal factors. Maternal pre-pregnancy BMI was a significant predictor of child ADHD symptoms (F((1,158)) = 4.80, p = 0.03) and of child performance on the Go/No-go task (F((1,157)) = 8.37, p = 0.004) after controlling for key potential confounding variables. A test of the mediation model revealed that the association between higher maternal pre-pregnancy BMI and child ADHD symptoms was mediated by impaired executive function (inefficient/less attentive processing; Sobel Test: t = 2.39 (± 0.002, SEM), p = 0.02).To the best of our knowledge this is the first study to report that maternal pre-pregnancy BMI-related alterations in child neurocognitive function may mediate its effects on ADHD risk. The finding is clinically significant and may extrapolate to an approximately 2.8-fold increase in the prevalence of ADHD among children of obese compared to those of non-obese mothers. These results add further evidence to the growing awareness that neurodevelopmental disorders such as ADHD may have their foundations very early in life
Epigenetic Effects of Prenatal Stress on 11β-Hydroxysteroid Dehydrogenase-2 in the Placenta and Fetal Brain
Maternal exposure to stress during pregnancy is associated with significant alterations in offspring neurodevelopment and elevated maternal glucocorticoids likely play a central role in mediating these effects. Placental 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers the impact of maternal glucocorticoid exposure by converting cortisol/corticosterone into inactive metabolites. However, previous studies indicate that maternal adversity during the prenatal period can lead to a down-regulation of this enzyme. In the current study, we examined the impact of prenatal stress (chronic restraint stress during gestational days 14–20) in Long Evans rats on HSD11B2 mRNA in the placenta and fetal brain (E20) and assessed the role of epigenetic mechanisms in these stress-induced effects. In the placenta, prenatal stress was associated with a significant decrease in HSD11B2 mRNA, increased mRNA levels of the DNA methyltransferase DNMT3a, and increased DNA methylation at specific CpG sites within the HSD11B2 gene promoter. Within the fetal hypothalamus, though we find no stress-induced effects on HSD11B2 mRNA levels, prenatal stress induced decreased CpG methylation within the HSD11B2 promoter and increased methylation at sites within exon 1. Within the fetal cortex, HSD11B2 mRNA and DNA methylation levels were not altered by prenatal stress, though we did find stress-induced elevations in DNMT1 mRNA in this brain region. Within individuals, we identified CpG sites within the HSD11B2 gene promoter and exon 1 at which DNA methylation levels were highly correlated between the placenta and fetal cortex. Overall, our findings implicate DNA methylation as a mechanism by which prenatal stress alters HSD11B2 gene expression. These findings highlight the tissue specificity of epigenetic effects, but also raise the intriguing possibility of using the epigenetic status of placenta to predict corresponding changes in the brain
Associations of depression and depressive symptoms with preeclampsia: results from a Peruvian case-control study
<p>Abstract</p> <p>Background</p> <p>Preeclampsia involves endothelial dysfunction, platelet dysfunction/activation and sympathetic over-activity similar to cardiovascular disorders (CVD). Depression, an independent risk factor for progression of CVD, was found to be associated with an increased risk of preeclampsia among Finnish women. We examined the relation between depression/depressive symptoms and preeclampsia risk among Peruvian women.</p> <p>Methods</p> <p>The study included 339 preeclamptic cases and 337 normotensive controls. Depression and depressive symptoms during pregnancy were assessed using the Patient Health Questionnaire (PHQ-9). Odds ratios (OR) and 95% confidence intervals (CI) were estimated from logistic regression models.</p> <p>Results</p> <p>The prevalence of moderate depression was 11.5% among cases and 5.3% among controls. The corresponding figures for moderate-severe depression were 3.5% for cases and 2.1% for controls. Compared with non-depressed women, those with moderate depression had a 2.3-fold increased risk of preeclampsia (95% CI: 1.2–4.4), while moderate-severe depression was associated with a 3.2-fold (95% CI: 1.1–9.6) increased risk of preeclampsia. Associations of each of the 9-items of the PHQ-9 depression screening module with preeclampsia risk were also observed.</p> <p>Conclusion</p> <p>Our findings are consistent with the only other published report on this topic. Collectively, available data support recent calls for expanded efforts to study and address depression among pregnant women.</p
Prenatal Stress and Risk of Febrile Seizures in Children: A Nationwide Longitudinal Study in Denmark
We aimed to examine whether exposure to prenatal stress following maternal bereavement is associated with an increased risk of febrile seizures. In a longitudinal population-based cohort study, we followed 1,431,175 children born in Denmark. A total of 34,777 children were born to women who lost a close relative during pregnancy or within 1 year before the pregnancy and they were included in the exposed group. The exposed children had a risk of febrile seizures similar to that of the unexposed children (hazard ratio (HR) 1.00, 95% CI 0.94–1.06). The HRs did not differ according to the nature or timing of bereavement. Our data do not suggest any causal link between exposure to prenatal stress and febrile seizures in childhood
- …