415 research outputs found
Can Cosmic Structure form without Dark Matter?
One of the prime pieces of evidence for dark matter is the observation of
large overdense regions in the universe. Since we know from the cosmic
microwave background that the regions that contained the most baryons when the
universe was ~400,000 years old were overdense by only one part in ten
thousand, perturbations had to have grown since then by a factor greater than
where is the epoch of recombination. This enhanced
growth does not happen in general relativity, so dark matter is needed in the
standard theory. We show here that enhanced growth can occur in alternatives to
general relativity, in particular in Bekenstein's relativistic version of
MOdified Newtonian Dynamics (MOND). The vector field introduced in that theory
for a completely different reason plays a key role in generating the
instability that produces large cosmic structures today.Comment: 5 pages, 3 figure
Towards an Achievable Performance for the Loop Nests
Numerous code optimization techniques, including loop nest optimizations,
have been developed over the last four decades. Loop optimization techniques
transform loop nests to improve the performance of the code on a target
architecture, including exposing parallelism. Finding and evaluating an
optimal, semantic-preserving sequence of transformations is a complex problem.
The sequence is guided using heuristics and/or analytical models and there is
no way of knowing how close it gets to optimal performance or if there is any
headroom for improvement. This paper makes two contributions. First, it uses a
comparative analysis of loop optimizations/transformations across multiple
compilers to determine how much headroom may exist for each compiler. And
second, it presents an approach to characterize the loop nests based on their
hardware performance counter values and a Machine Learning approach that
predicts which compiler will generate the fastest code for a loop nest. The
prediction is made for both auto-vectorized, serial compilation and for
auto-parallelization. The results show that the headroom for state-of-the-art
compilers ranges from 1.10x to 1.42x for the serial code and from 1.30x to
1.71x for the auto-parallelized code. These results are based on the Machine
Learning predictions.Comment: Accepted at the 31st International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2018
Recommended from our members
Precision Standard Model measurements at the Tevatron
The CDF and D0 collaborations at the Tevatron have produced exquisite precision measurements on high-P{sub T} physics with their large datasets of p{bar p} collisions. The top quark is being studied in great detail, and a precision of 1.1% in the measurement of its mass has been achieved. The large datasets of W and Z boson decays have allowed the most precise measurement of the W mass to date, and detailed studies of production and decay asymmetries; moreover, associated production of pairs of vector bosons have been observed and measured. The precise knowledge of top and W masses are providing decisive new input for the allowed mass range of a standard model Higgs boson, as well as for the parameter space of benchmark scenarios in supersymmetric theories
On the influence of the cosmological constant on gravitational lensing in small systems
The cosmological constant Lambda affects gravitational lensing phenomena. The
contribution of Lambda to the observable angular positions of multiple images
and to their amplification and time delay is here computed through a study in
the weak deflection limit of the equations of motion in the Schwarzschild-de
Sitter metric. Due to Lambda the unresolved images are slightly demagnified,
the radius of the Einstein ring decreases and the time delay increases. The
effect is however negligible for near lenses. In the case of null cosmological
constant, we provide some updated results on lensing by a Schwarzschild black
hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation,
references added, results unchanged, in press on PR
The GINGER Project and status of the ring-laser of LNGS
A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed
to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral
Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector;
it is based on an array of ring-lasers. Comparing the Earth angular velocity measured
by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be
evaluated. Compared to the existing space experiments, GINGER provides a local measurement,
not the averaged value and it is unnecessary to model the gravitational field. It is a proposal,
but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of
Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system
which provides the measure of the Length Of the DAY (LOD); G provides information on the fast
component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The
experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations
and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso
and some results will be presented. The first results of GINGERino will be reported, GINGERino
is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers
provide as well important informations for geophysics, in particular the rotational seismology,
which is an emerging field of science. GINGERino is one of the three experiments of common
interest between INFN and INGV
Book of Abstracts & Lead Articles The Second International Symposium Remote Sensing for Ecosystem Analysis and Fisheries
SAFARI (Societal Applications in Fisheries and Aquaculture using Remotely-Sensed
Imagery) is an initiative which provides a forum for coordination, at the international
level, of activities in global fisheries research and management. The forum is open to all
interested parties, including policy makers, research scientists, government managers, and
those involved in the fishing industries. SAFARI organizes international workshops and
symposia as a platform to discuss the latest research in Earth observation and fisheries
management, information sessions aimed at the fisheries industry, government officials
and resource managers, representation at policy meetings, and producing publications
relevant to the activities. SAFARI gains worldwide attention through collaboration
with other international networks, such as ChloroGIN (Chlorophyll Global Integrated
Network), IOCCG (International Ocean-Colour Coordinating Group), POGO (Partnership
for Observation of the Global Oceans) and the oceans and society: Blue Planet Initiative
of the intergovernmental organization, the Group on Earth Observations (GEO)
Antihyperon-Production in Relativistic Heavy Ion Collision
Recently it has been shown that the observed antiproton yield in heavy-ion
collisions at CERN-SpS energies can be understood by multi-pionic interactions
which enforce local chemical equilibrium of the antiprotons with the nucleons
and pions. Here we show that antihyperons are driven towards local chemical
equilibrium with pions, nucleons and kaons on a timescale of less than 3 fm/c
when applying a similar argument for the antihyperons by considering the
inverse channel of annihilation reactions anti-Y + p to pions + kaons. These
multi-mesonic reactions easily explain the antihyperon yields at CERN-SpS
energies as advertised in pure thermal, hadronic models without the need of a
quark gluon plasma phase. In addition, the argument also applies for AGS
energies.Comment: 4 pages using RevTeX, 1 eps figur
Geodesic motion in the space-time of a cosmic string
We study the geodesic equation in the space-time of an Abelian-Higgs string
and discuss the motion of massless and massive test particles. The geodesics
can be classified according to the particles energy, angular momentum and
linear momentum along the string axis. We observe that bound orbits of massive
particles are only possible if the Higgs boson mass is smaller than the gauge
boson mass, while massless particles always move on escape orbits. Moreover,
neither massive nor massless particles can ever reach the string axis for
non-vanishing angular momentum. We also discuss the dependence of light
deflection by a cosmic string as well as the perihelion shift of bound orbits
of massive particles on the ratio between Higgs and gauge boson mass and the
ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on
null geodesics extended, numerical results adde
- …