236 research outputs found

    Countable Random Sets: Uniqueness in Law and Constructiveness

    Full text link
    The first part of this article deals with theorems on uniqueness in law for \sigma-finite and constructive countable random sets, which in contrast to the usual assumptions may have points of accumulation. We discuss and compare two approaches on uniqueness theorems: First, the study of generators for \sigma-fields used in this context and, secondly, the analysis of hitting functions. The last section of this paper deals with the notion of constructiveness. We will prove a measurable selection theorem and a decomposition theorem for constructive countable random sets, and study constructive countable random sets with independent increments.Comment: Published in Journal of Theoretical Probability (http://www.springerlink.com/content/0894-9840/). The final publication is available at http://www.springerlink.co

    Tensor products of subspace lattices and rank one density

    Full text link
    We show that, if MM is a subspace lattice with the property that the rank one subspace of its operator algebra is weak* dense, LL is a commutative subspace lattice and PP is the lattice of all projections on a separable infinite dimensional Hilbert space, then the lattice LMPL\otimes M\otimes P is reflexive. If MM is moreover an atomic Boolean subspace lattice while LL is any subspace lattice, we provide a concrete lattice theoretic description of LML\otimes M in terms of projection valued functions defined on the set of atoms of MM. As a consequence, we show that the Lattice Tensor Product Formula holds for \Alg M and any other reflexive operator algebra and give several further corollaries of these results.Comment: 15 page

    The NESTOR Framework: how to Handle Hierarchical Data Structures

    Get PDF
    Περιέχει το πλήρες κείμενοIn this paper we study the problem of representing, managing and exchanging hierarchically structured data in the context of a Digital Library (DL). We present the NEsted SeTs for Object hieRarchies (NESTOR) framework defining two set data models that we call: the “Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INSM)” based on the organization of nested sets which enable the representation of hierarchical data structures. We present the mapping between the tree data structure to NS-M and to INS-M. Furthermore, we shall show how these set data models can be used in conjunction with Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) adding new functionalities to the protocol without any change to its basic functioning. At the end we shall present how the couple OAI-PMH and the set data models can be used to represent and exchange archival metadata in a distributed environment

    Kochen-Specker Sets and Generalized Orthoarguesian Equations

    Full text link
    Every set (finite or infinite) of quantum vectors (states) satisfies generalized orthoarguesian equations (nnOA). We consider two 3-dim Kochen-Specker (KS) sets of vectors and show how each of them should be represented by means of a Hasse diagram---a lattice, an algebra of subspaces of a Hilbert space--that contains rays and planes determined by the vectors so as to satisfy nnOA. That also shows why they cannot be represented by a special kind of Hasse diagram called a Greechie diagram, as has been erroneously done in the literature. One of the KS sets (Peres') is an example of a lattice in which 6OA pass and 7OA fails, and that closes an open question of whether the 7oa class of lattices properly contains the 6oa class. This result is important because it provides additional evidence that our previously given proof of noa =< (n+1)oa can be extended to proper inclusion noa < (n+1)oa and that nOA form an infinite sequence of successively stronger equations.Comment: 16 pages and 5 figure

    The diagonalization method in quantum recursion theory

    Full text link
    As quantum parallelism allows the effective co-representation of classical mutually exclusive states, the diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves unitary operators whose eigenvalues are different from one.Comment: 15 pages, completely rewritte

    Spatio-temporal structure of cell distribution in cortical Bone Multicellular Units: a mathematical model

    Full text link
    Bone remodelling maintains the functionality of skeletal tissue by locally coordinating bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts) in the form of Bone Multicellular Units (BMUs). Understanding the emergence of such structured units out of the complex network of biochemical interactions between bone cells is essential to extend our fundamental knowledge of normal bone physiology and its disorders. To this end, we propose a spatio-temporal continuum model that integrates some of the most important interaction pathways currently known to exist between cells of the osteoblastic and osteoclastic lineage. This mathematical model allows us to test the significance and completeness of these pathways based on their ability to reproduce the spatio-temporal dynamics of individual BMUs. We show that under suitable conditions, the experimentally-observed structured cell distribution of cortical BMUs is retrieved. The proposed model admits travelling-wave-like solutions for the cell densities with tightly organised profiles, corresponding to the progression of a single remodelling BMU. The shapes of these spatial profiles within the travelling structure can be linked to the intrinsic parameters of the model such as differentiation and apoptosis rates for bone cells. In addition to the cell distribution, the spatial distribution of regulatory factors can also be calculated. This provides new insights on how different regulatory factors exert their action on bone cells leading to cellular spatial and temporal segregation, and functional coordination.Comment: 14 pages, 5 figures; v2: Completed model description after Eq. (16), clarified discussion/description after Eq. (23), between Eqs. (29)-(31), and in 2nd bullet point in conclusion

    Sharp and fuzzy observables on effect algebras

    Full text link
    Observables on effect algebras and their fuzzy versions obtained by means of confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with the (E)-property, given an observable and a confidence measure, there exists a fuzzy version of the observable. Ordering of observables according to their fuzzy properties is introduced, and some minimality conditions with respect to this ordering are found. Applications of some results of classical theory of experiments are considered.Comment: 23 page

    Unitarity of Quantum Theory and Closed Time-Like Curves

    Get PDF
    Interacting quantum fields on spacetimes containing regions of closed timelike curves (CTCs) are subject to a non-unitary evolution XX. Recently, a prescription has been proposed, which restores unitarity of the evolution by modifying the inner product on the final Hilbert space. We give a rigorous description of this proposal and note an operational problem which arises when one considers the composition of two or more non-unitary evolutions. We propose an alternative method by which unitarity of the evolution may be regained, by extending XX to a unitary evolution on a larger (possibly indefinite) inner product space. The proposal removes the ambiguity noted by Jacobson in assigning expectation values to observables localised in regions spacelike separated from the CTC region. We comment on the physical significance of the possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D. Some changes are made to expand our discussion of Anderson's Proposal for restoring unitarit

    Smearing of Observables and Spectral Measures on Quantum Structures

    Full text link
    An observable on a quantum structure is any σ\sigma-homomorphism of quantum structures from the Borel σ\sigma-algebra of the real line into the quantum structure which is in our case a monotone σ\sigma-complete effect algebras with the Riesz Decomposition Property. We show that every observable is a smearing of a sharp observable which takes values from a Boolean σ\sigma-subalgebra of the effect algebra, and we prove that for every element of the effect algebra there is its spectral measure

    Dualities for modal algebras from the point of view of triples

    Get PDF
    In this paper we show how the theory of monads can be used to deduce in a uniform manner several duality theorems involving categories of relations on one side and categories of algebras with homomorphisms preserving only some operations on the other. Furthermore, we investigate the monoidal structure induced by Cartesian product on the relational side and show that in some cases the corresponding operation on the algebraic side represents bimorphisms
    corecore