1,694 research outputs found

    Enlarged Galilean symmetry of anyons and the Hall effect

    Full text link
    Enlarged planar Galilean symmetry, built of both space-time and field variables and also incorporating the ``exotic'' central extension is introduced. It is used to describe non-relativistic anyons coupled to an electromagnetic field. Our theory exhibits an anomalous velocity relation of the type used to explain the Anomalous Hall Effect. The Hall motions, characterized by a Casimir of the enlarged algebra, become mandatory for some critical value(s) of the magnetic field. The extension of our scheme yields the semiclassical effective model of the Bloch electron.Comment: LaTeX, 7 pages. No figures. One more reference adde

    An alternative NMSSM phenomenology with manifest perturbative unification

    Get PDF
    Can supersymmetric models with a moderate stop mass be made consistent with the negative Higgs boson searches at LEP, while keeping perturbative unification manifest? The NMSSM achieves this rather easily, but only if extra matter multiplets filling complete SU(5) representations are present at intermediate energies. As a concrete example which makes use of this feature, we give an analytic description of the phenomenology of a constrained NMSSM close to a Peccei-Quinn symmetry point. The related pseudo-Goldstone boson appears in decays of the Higgs bosons and possibly of the lightest neutralino, and itself decays into (b anti-b) and (tau anti-tau).Comment: 19 pages, 13 figures; v2: possibility of pseudo-Goldstone below 2m_b threshold added, version published by JHE

    Understorey plant community and light availability in conifer plantations and natural hardwood forests in Taiwan

    Get PDF
    Questions: What are the effects of replacing mixed species natural forests with Cryptomeria japonica plantations on understorey plant functional and species diversity? What is the role of the understorey light environment in determining understorey diversity and community in the two types of forest? Location: Subtropical northeast Taiwan. Methods: We examined light environments using hemispherical photography, and diversity and composition of understorey plants of a 35‐yr C. japonica plantation and an adjacent natural hardwood forest. Results: Understorey plant species richness was similar in the two forests, but the communities were different; only 18 of the 91 recorded understorey plant species occurred in both forests. Relative abundance of plants among different functional groups differed between the two forests. Relative numbers of shade‐tolerant and shade‐intolerant seedling individuals were also different between the two forest types with only one shade‐intolerant seedling in the plantation compared to 23 seedlings belonging to two species in the natural forest. In the natural forest 11 species of tree seedling were found, while in the plantation only five were found, and the seedling density was only one third of that in the natural forest. Across plots in both forests, understorey plant richness and diversity were negatively correlated with direct sunlight but not indirect sunlight, possibly because direct light plays a more important role in understorey plant growth. Conclusions: We report lower species and functional diversity and higher light availability in a natural hardwood forest than an adjacent 30‐yr C. japonica plantation, possibly due to the increased dominance of shade‐intolerant species associated with higher light availability. To maintain plant diversity, management efforts must be made to prevent localized losses of shade‐adapted understorey plants

    Failure due to fatigue in fiber bundles and solids

    Get PDF
    We consider first a homogeneous fiber bundle model where all the fibers have got the same stress threshold beyond which all fail simultaneously in absence of noise. At finite noise, the bundle acquires a fatigue behavior due to the noise-induced failure probability at any stress. We solve this dynamics of failure analytically and show that the average failure time of the bundle decreases exponentially as the stress increases. We also determine the avalanche size distribution during such failure and find a power law decay. We compare this fatigue behavior with that obtained phenomenologically for the nucleation of Griffith cracks. Next we study numerically the fatigue behavior of random fiber bundles having simple distributions of individual fiber strengths, at stress less than the bundle's strength (beyond which it fails instantly). The average failure time is again seen to decrease exponentially as the stress increases and the avalanche size distribution shows similar power law decay. These results are also in broad agreement with experimental observations on fatigue in solids. We believe, these observations regarding the failure time are useful for quantum breakdown phenomena in disordered systems.Comment: 13 pages, 4 figures, figures added and the text is revise

    Electromagnetic radiation from collisions at almost the speed of light: an extremely relativistic charged particle falling into a Schwarzschild black hole

    Full text link
    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is supressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after the black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four-dimensional, it does not directly apply to Tev-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions.Comment: 6 pages, 2 figure

    Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic heavy-ion transits. In this context the Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles' mass. A new equivalent single-photon distribution is derived which correctly accounts for the Coulomb distortions. As an immediate application, consequences for unitarity violation in photo-dissociation processes in peripheral heavy-ion encounters are discussed.Comment: 13 pages, 4 .eps figure

    Connected Green function approach to ground state symmetry breaking in Ί1+14\Phi^4_{1+1}-theory

    Full text link
    Using the cluster expansions for n-point Green functions we derive a closed set of dynamical equations of motion for connected equal-time Green functions by neglecting all connected functions higher than 4th4^{th} order for the λΊ4\lambda \Phi^4-theory in 1+11+1 dimensions. We apply the equations to the investigation of spontaneous ground state symmetry breaking, i.e. to the evaluation of the effective potential at temperature T=0T=0. Within our momentum space discretization we obtain a second order phase transition (in agreement with the Simon-Griffith theorem) and a critical coupling of λcrit/4m2=2.446\lambda_{crit}/4m^2=2.446 as compared to a first order phase transition and λcrit/4m2=2.568\lambda_{crit}/4m^2=2.568 from the Gaussian effective potential approach.Comment: 25 Revtex pages, 5 figures available via fpt from the directory ugi-94-11 of [email protected] as one postscript file (there was a bug in our calculations, all numerical results and figures have changed significantly), ugi-94-1

    A quantitative risk assessment model to evaluate effective border control measures for rabies prevention

    Get PDF
    Border control is the primary method to prevent rabies emergence. This study developed a quantitative risk model incorporating stochastic processes to evaluate whether border control measures could efficiently prevent rabies introduction through importation of cats and dogs using Taiwan as an example. Both legal importation and illegal smuggling were investigated. The impacts of reduced quarantine and/or waiting period on the risk of rabies introduction were also evaluated. The results showed that Taiwan's current animal importation policy could effectively prevent rabies introduction through legal importation of cats and dogs. The median risk of a rabid animal to penetrate current border control measures and enter Taiwan was 5.33 X 10(-8) (95th percentile: 3.20 x 10(-7)). However, illegal smuggling may pose Taiwan to the great risk of rabies emergence. Reduction of quarantine and/or waiting period would affect the risk differently, depending on the applied assumptions, such as increased vaccination coverage, enforced custom checking, and/or change in number of legal importations. Although the changes in the estimated risk under the assumed alternatives were not substantial except for completely abolishing quarantine, the consequences of rabies introduction may yet be considered to be significant in a rabies-free area. Therefore, a comprehensive benefit-cost analysis needs to be conducted before recommending these alternative measures
    • 

    corecore