1,890 research outputs found

    An Universal Quantum Network - Quantum CPU

    Get PDF
    An universal quantum network which can implement a general quantum computing is proposed. In this sense, it can be called the quantum central processing unit (QCPU). For a given quantum computing, its realization of QCPU is just its quantum network. QCPU is standard and easy-assemble because it only has two kinds of basic elements and two auxiliary elements. QCPU and its realizations are scalable, that is, they can be connected together, and so they can construct the whole quantum network to implement the general quantum algorithm and quantum simulating procedure.Comment: 8 pages, Revised versio

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure

    Towards practical classical processing for the surface code: timing analysis

    Full text link
    Topological quantum error correction codes have high thresholds and are well suited to physical implementation. The minimum weight perfect matching algorithm can be used to efficiently handle errors in such codes. We perform a timing analysis of our current implementation of the minimum weight perfect matching algorithm. Our implementation performs the classical processing associated with an nxn lattice of qubits realizing a square surface code storing a single logical qubit of information in a fault-tolerant manner. We empirically demonstrate that our implementation requires only O(n^2) average time per round of error correction for code distances ranging from 4 to 512 and a range of depolarizing error rates. We also describe tests we have performed to verify that it always obtains a true minimum weight perfect matching.Comment: 13 pages, 13 figures, version accepted for publicatio

    Cyclic Quantum Error-Correcting Codes and Quantum Shift Registers

    Get PDF
    We transfer the concept of linear feed-back shift registers to quantum circuits. It is shown how to use these quantum linear shift registers for encoding and decoding cyclic quantum error-correcting codes.Comment: 18 pages, 15 figures, submitted to Proc. R. Soc.

    Quantum Computers, Factoring, and Decoherence

    Get PDF
    In a quantum computer any superposition of inputs evolves unitarily into the corresponding superposition of outputs. It has been recently demonstrated that such computers can dramatically speed up the task of finding factors of large numbers -- a problem of great practical significance because of its cryptographic applications. Instead of the nearly exponential (expL1/3\sim \exp L^{1/3}, for a number with LL digits) time required by the fastest classical algorithm, the quantum algorithm gives factors in a time polynomial in LL (L2\sim L^2). This enormous speed-up is possible in principle because quantum computation can simultaneously follow all of the paths corresponding to the distinct classical inputs, obtaining the solution as a result of coherent quantum interference between the alternatives. Hence, a quantum computer is sophisticated interference device, and it is essential for its quantum state to remain coherent in the course of the operation. In this report we investigate the effect of decoherence on the quantum factorization algorithm and establish an upper bound on a ``quantum factorizable'' LL based on the decoherence suffered per operational step.Comment: 7 pages,LaTex + 2 postcript figures in a uuencoded fil

    Qubit Entanglement Breaking Channels

    Get PDF
    This paper continues the study of stochastic maps, or channels, which break entanglement. We give a detailed description of entanglement-breaking qubit channels, and show that such maps are precisely the convex hull of those known as classical-quantum channels. We also review the complete positivity conditions in a canonical parameterization and show how they lead to entanglement-breaking conditions.Comment: Contains main results from section 2 of quant-ph/0207100 Version 2 corrects minor typos. Final version to appear in Rev. Math. Phy

    Inequalities for quantum channels assisted by limited resources

    Full text link
    The information capacities and ``distillability'' of a quantum channel are studied in the presence of auxiliary resources. These include prior entanglement shared between the sender and receiver and free classical bits of forward and backward communication. Inequalities and trade-off curves are derived. In particular an alternative proof is given that in the absence of feedback and shared entanglement, forward classical communication does not increase the quantum capacity of a channel.Comment: 8 pages, 4 figures (references updated, minor changes

    Simple proof of fault tolerance in the graph-state model

    Get PDF
    We consider the problem of fault tolerance in the graph-state model of quantum computation. Using the notion of composable simulations, we provide a simple proof for the existence of an accuracy threshold for graph-state computation by invoking the threshold theorem derived for quantum circuit computation. Lower bounds for the threshold in the graph-state model are then obtained from known bounds in the circuit model under the same noise process.Comment: 6 pages, 2 figures, REVTeX4. (v4): Minor revisions and new title; published versio
    corecore